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ABSTRACT  

Fourth generation mobile networks implement so-called small cells to cover gaps 

in signal such as inside buildings to improve users' experienced quality of services. The 

small cells can be connected to the core network via either conventional operator's 

backhaul or a user's internet connection, such as ADSL. The former one are represented 

by microcells and picocells while the later one are known as femtocells. If a user is 

moving along the area with dense deployment of the small cells, a user equipment can 

be forced to perform frequent handovers. This leads to redundant signaling overhead 

and to a degradation of quality of service for users due to short interruption in 

communication during handover. This thesis tackles problems related to mobility 

management in fourth generation mobile networks with small cells. First, two 

innovative solutions for elimination of redundant hard handovers in small cells are 

described. As the simulation results show, both proposals on hard handover are able to 

improve network performance comparing to existing and competitive proposals. 

Nevertheless, to overcome the problem of the handover interruption, the fast cell 

selection must be implemented. Therefore, an improvement of a fast cell selection is 

proposed to overcome the drop in quality of service for the scenario with femtocells 

with limited capacity of backhaul. The proposed algorithm for the fast cell selection 

eliminates handover interruption and it also improves user's throughput and reduces 

signaling overhead comparing to the competitive proposals. Last, a management 

procedure for temporary access of visiting UEs to femtocells with closed access is 

proposed. Two options of management communication are designed: in-band and out-

of-band. The out-of-band communication technology leads to higher energy 

consumption at all involved user equipments. However, it does not introduce additional 

overhead on communication channels as does the in-band approach. 
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1 INTRODUCTION 

The fourth generation (4G) mobile networks are assumed to be deployed at 

frequencies in order of GHz (e.g., 2 or 2.6 GHz). Transmission at such frequencies leads 

to higher attenuation of signal propagated from a transceiver to a receiver comparing to 

former bands at roughly 0.9 GHz utilized for GSM.  To cover potential gaps in coverage 

due to heavy attenuation of a signal at higher frequencies, small cells can be deployed. 

In general, two types of small cells are distinguished: femtocells and pico/microcells. In 

both cases, radius of cells is low, i.e., in order of tens of meters.  

The femtocell, denoted as Femto Access Point (FAP), is assumed to be placed in 

user's premises (houses, flats) or enterprises. The FAPs are owned by users and also  

controlled by users. Their connection to a core network is enabled via a backhaul of 

limited capacity and variable quality. Typically, Asynchronous Digital Subscriber Line 

(ADSL) is used as the backhaul connection. Generally, three types of user’s accesses 

can be provided by the FAPs: open, closed, and hybrid [1]. In the case of the open 

access, all users in the coverage of a FAP can connect to it. A benefit of the open access 

consists in an opportunity to offload a Macrocell Base Station (MBS) by serving some 

users in areas with heavy traffic load or users far from the MBS [2]. On the contrary, the 

FAP with closed access admits only users included in so called Closed Subscriber 

Group (CSG) list. The CSG list contains identification of all user equipments (UEs) that 

can access the FAP. Users not listed in CSG are not allowed to attach to the closed FAP. 

Interference in the case of the closed access should be carefully managed in areas with 

dense deployment of the FAPs in order to avoid an impairment of the system 

performance. A combination of both open and closed accesses is known as hybrid 

access. If the hybrid access is considered, a part of capacity is dedicated for the CSG 

users and the rest of the bandwidth can be shared by other users. As presented in [3], the 

open access provides higher throughput experienced by users when compared to the 
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closed one. This fact is emphasized especially for low density of the macrocell users 

[4].  

The pico/microcells can be also deployed in users’ premises; however, these cells 

are supposed rather for deployment in enterprises or public areas [5]. Contrary to 

femtocells, the pico/microcells are under full control of the operator. Moreover, the 

pico/microcells should be interconnected with operator's backhaul by a high quality link 

with sufficient capacity to serve all traffic transmitted over the air. 

Dense deployment of small cells introduces new challenges related especially to 

interference mitigation for the closed access and users' mobility management for the 

open or hybrid accesses [6]. This habilitation thesis is focused on mobility management. 

A mobile user is forced to perform handover from a serving cell to a target cell to keep 

the quality of service (QoS). If the user is moving close to the area with dense 

deployment of small cells, large number of handovers can be performed within a short 

time interval. Then, a drop in QoS is introduced due to the short interruption as a 

consequence of hard handover. This is notable especially for real-time services. The 

amount of handovers can be adjusted by techniques used for elimination of redundant 

handovers, such as a hysteresis or a time-to-trigger [7], [8]. Unfortunately, those 

techniques considerably decrease user's throughput in networks with small cells [9]. 

Moreover, an interruption is still observed if a conventional hard handover is performed 

as the user is disconnected from a serving cell before a new connection to a target cell is 

established [10]. Fast Cell Selection (FCS) can be exploited instead of the hard 

handover to suppress the problem of the handover interruption and QoS decrease in the 

networks with dense deployment of the small cells. However, an implementation of 

FCS to real networks is more demanding and more complex comparing to hard 

handover. 

This thesis provides two solutions for hard handover that targets on reduction of 

amount of handovers to minimize negative impact of handover interruption. At the same 

time, both approaches  keeping the same or even improved throughput of  the users in 

the networks with small cells. Furthermore, FCS is evaluated for both femto and 

pico/micro cells to show its efficiency in heterogeneous networks with small cells. Also 

an algorithm for management of an active set considering amount of consumed radio 

resources is proposed to overcome inefficiency of FCS in networks with small cells. 

Last, we propose management procedure for admission of a visiting UE  to the CSG 
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cells. In this thesis, we focus mostly on femtocells as those are more challenging due to 

lower quality of the backhaul than pico/microcells. However, all the proposed solutions 

for hard handover and FCS are applicable to pico/micro cells as well. 

The rest of the thesis is organized as follows. The next chapter describes and 

analyzes related works in the area of the mobility management in 4G wireless networks. 

Chapter III defines motivation and objectives of this thesis. Methodology and scenarios 

used for the performance evaluations are addressed in Chapter IV. Then, Chapter V 

provides description and assessment of two proposals on the management of hard 

handover. Chapter VI is focused on advanced mobility support by means of FCS. 

Chapter VII defines the management procedure for support of a temporary access of so-

called visiting users to the CSG FAPs. The last chapter summarize major conclusions 

and defines potential directions for the future research. 
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2 RELATED WORKS 

This chapter gives an overview of the state of the art of the work related to the 

mobility management in the mobile wireless networks. The research contributions 

presented later in this habilitation thesis with respect to the presented related works is 

also presented in this chapter.  

2.1 HARD HANDOVER 

A conventional hard handover is based on comparison of signal levels of serving 

and target cells. Handover is executed if the signal level of the target cell exceeds the 

one of the serving cell. Several techniques such as Hysteresis Margin (HM) [11], [12], 

Time-To-Trigger (TTT) or windowing (also known as signal averaging) [11] are 

defined to eliminate redundant handovers in conventional networks without small cells. 

In the case of using any conventional technique for elimination of redundant handovers 

a drop in throughput is introduced. This is due to a short time when the UE 

communicates with the serving station even if a potential target station provides channel 

of a higher quality. A drop in throughput is even more significant if the conventional 

techniques (e.g., HM, TTT, or windowing) are utilized for elimination of redundant 

handovers in scenario with the small cells [9]. A modification of the conventional HM 

is defined in [13]. The authors evaluate so-called adaptive HM in scenario with 

deployed MBSs but without FAPs. The paper assumes exact knowledge of the distance 

among an UE and its serving MBS and exact and invariant radius of the MBSs. The 

radius of all cells is assumed to be the same.  Nevertheless, the radius is slightly varying 

in time in the real networks. Moreover, the radius of individual cells is largely different 

if the small cells overlapping with macrocells are deployed. Beside, the exact position 

of the FAPs is not defined by operators as it is in charge of the user. Thus, the cell 

radius of the FAPs cannot be precisely estimated. Therefore technique proposed in [13]  

cannot be applied into the networks with small cells and especially with the FAPs. 
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The handover mechanism for FAPs considering asymmetry of a transmitting 

power of the FAP and the MBS is introduced in [14] and further extended in [15]. This 

mechanism compares the level of the average signal received from the potential target 

FAP with the absolute threshold value of -72 dB. Besides, the signal of the MBS is 

compared with a combination of the signals from the MBS and the FAP. After the 

comparison of the individual results, either the MBS or the FAP is selected as the 

serving station. This proposal increases the probability of handover to the FAP if this 

FAP provides signal above the threshold and if the FAP is deployed far from the MBS. 

Otherwise, if the threshold is not met, the handover is performed as in the conventional 

way. Unfortunately, the paper provides no solution for the scenario with overlapping 

femtocells. As the authors indicate, the proposed algorithm eliminates redundant 

handovers if the FAP is close to the MBS. However, overall amount of handovers is 

even increased comparing to the conventional approach. The authors also do not 

consider limited capacity of the FAP backhaul in evaluations. 

The combination of additional parameters, such as user’s speed and QoS 

requirements, for improvement of the handover decision is presented in [16]. Although 

the number of the unnecessary handovers is reduced, the throughput is also negatively 

influenced. Another speed-aware algorithm is proposed in [17]. The authors exploit a 

fuzzy-logic system for the handover decision. The similar idea is further elaborated and 

extended in [18] where a new fuzzy-logic based handover algorithm with awareness of 

the speed is introduced. However, both papers are focused only on the conventional 

networks with macrocells while specifics of the small cells are not taken into account. 

Another approach eliminating redundant handovers is to adapt the transmission 

power of the FAPs. The proposals dealing with power control adjustment to reduce the 

number of redundant handovers in femtocells are presented, e.g., in [19], [20], [21]. All 

these proposals eliminate majority of the redundant handovers. Nevertheless, the 

advantage of the throughput gain due to the utilization of the open or hybrid accesses 

(illustrated in [1]) is also distinctively suppressed by the reduction of the FAP’s 

transmitting power. Therefore, these solutions are more suitable for the closed access.  

The authors of [22] discuss vertical handover between IEEE 802.16e and Wireless 

Local Area Network (WLAN) to maximize user's satisfaction. Taking lower cost of the 

connection via WLAN into account, the authors suggest keeping the user connected to 

WLAN if it provides sufficient capacity to the user. However, the handover decision 
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based only on the current bit rate achieved by the UE leads to the redundant handovers 

if WLAN's load fluctuates frequently. Moreover, the authors assume invariable 

throughput for users no matter what is its relative position with respect to the MBSs and 

the WLAN access points. It means a variability of the throughput in dependence on the 

distance between the user and its serving and interfering nodes is not considered.   

Furthermore, prediction-based algorithms can be exploited for handover to 

improve its efficiency (see, e.g., [23], [24], [25]). The prediction-based approaches 

reach high efficiency in determination of the target MBS. However, by deployment of 

small cells, the prediction accuracy is strongly affected since small cells' radius is very 

low and since the small cells overlapping with MBSs. Moreover, even if the prediction 

reaches high efficiency in term of high ratio of correctly predicted target cells; the 

handover to the estimated target cell can be inefficient if this cell is a small cell. This is 

due to a short time spent by the UE under the small cell's coverage or due to limited 

capacity of the femtocells backhaul. 

The first contribution of this thesis exploits an idea of the adaptive HM and adapts 

it to be easily implemented to 4G networks and also to modify the procedure of HM 

adaptation to be applicable in 4G networks with femtocells. We propose to utilize 

conventionally reported metrics such as RSSI (Received Signal Strength Indicator) or 

CINR (Carrier to Interference plus Noise Ratio) for dynamic adaptation of an actual 

value of HM. The second contribution related to hard handover is the algorithm for the 

handover decision based on a profitability of handover to the FAP. Handover is 

performed only if an estimated throughput offered to a UE by the FAP exceeds the 

throughput offered by the MBS. Both radio as well as backhaul parameters of the FAPs 

and the MBSs are taken into account in the proposed handover decision. Consequently, 

the proposed procedure rejects only those handovers to the FAPs that do not introduce 

any considerable improvement in users’ throughput. In other words, the purpose of the 

proposed handover decision is to reduce amount of initiated handovers to the FAPs with 

low profit (or even with loss) for either network (operator) or users. 

2.2 FAST CELL SELECTION 

Even if all the proposed modifications related to hard handover are somehow able 

to improve the network performance, an interruption due to the hard handover cannot be 

eliminated. Moreover, a degradation of a channel quality for cell-edge users is observed 
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due to heavy interference if the small cells and the macrocells share the same frequency 

bands.  

To minimize the problem of the handover interruption, FCS can be implemented. 

The FCS has been introduced in 3GPP Release 99 as the SSDT (Site Selection Diversity 

Transmission) feature (see [26], [27]). In 3GPP Release 99, FCS strongly relies on the 

use of CDMA while only the MBSs are considered. Therefore, modifications required 

for utilization of FCS in OFDMA networks with small cells should be defined. 

In the case of FCS, the AS is defined for each UE. The AS is comprised of several 

neighboring cells of the UE. Neighbor cells are added/removed to/from the AS 

depending on the signal level measured by the UE [26]. In [28], the authors compare 

fractional frequency reuse in a single cell transmission scenario with FCS enhanced by 

adaptive Multiple-Input Multiple-Output (MIMO) mode selection in combination with 

interference avoidance technique. The investigation is done for the active set 

encompassing two and three MBSs. The active set is updated according to the signal 

level received from the neighboring MBSs. Consideration of a relation among the signal 

levels of neighboring cells is the conventional approach for FCS. 

In [29], [30], the authors propose new metric, denoted as IINR (Interference to 

other Interferences plus Noise Ratio), for the active set management. In comparison to 

the conventional SINR, the IINR does not take the signal level of the serving cell into 

account. The measurement of IINR requires no transmission on the Resource Elements 

(REs) that are occupied by reference signals of the neighboring MBSs. The IINR 

introduces a gain in spectral efficiency for the cell-edge users and simultaneously it 

reduces amount of candidate cells reported by the UE. This way, the load in uplink is 

reduced while the downlink is unaffected.   

The authors of [31] propose a frequency muting for FCS. The muting is applied to 

the second strongest cell according to the UE's measurement. As the results show, this 

approach can introduce roughly 10% gain in throughput of the cell-edge users 

comparing to the single cell transmission. Further gain of additional 10% can be 

introduced by a joint processing. However, this is obtained at the cost of much higher 

complexity. Further extension of the muting idea is presented in [32]. The authors 

propose the adaptive muting based on a capacity calculation and a power allocation 

based on a muting mode selection. The muting is applied to all Resource Blocks (RBs) 
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to avoid power wasting. Hence, the transmitting power at some RBs is lowered while 

the power at some RBs is boosted. Nevertheless, the overall transmission power is kept 

as in the conventional case. The muting mode is considered only if the UE’s throughput 

is at least double comparing to the non-muting mode. The results show improvement in 

throughput by roughly 5.5% comparing to the single cell transmission. 

Analyzing an impact on throughput if a new cell is included in an active set is 

presented also in [33]. The authors compare the performance in the case when the 

candidate cell would be included with the case when it is not. If the gain by the 

inclusion of the cell exceeds the predefined threshold, the update of the active set is 

performed. 

The FCS introduces a gain in throughput especially at the cell edges where the 

interference is not marginal as shown, for example, in [33], [34], [35]. All above-

mentioned papers investigate FCS in the scenario with macrocells only. However, 

deployment of the small cells introduces several problems related to the limited 

backhaul and small cell radius that could negatively influence the performance of FCS 

in the networks with small cells. Therefore, we first evaluate performance of FCS and 

compare it with the conventional hard handover in the networks with small cells. 

Performance is assessed in terms of the management overhead and the handover 

interruption.  

Moreover, we also propose the algorithm for more efficient management of the 

active set respecting specifics of the small cells. Comparing to the listed related work on 

active set management, our proposal differs in several aspects. First, we consider 

deployment of the FAPs and its related backhaul problems. Large amount of radio 

resources of an MBS could be wasted if the MBS would be included in active set 

together with a FAP with weak signal. Therefore, comparing to [31], [32], our proposal 

is based on evaluation of the impact of the active set enhancement on the amount of 

consumed radio resources of the MBS. Further, a limitation of the FAP backhaul 

capacity and delay are considered in our proposal. As the FAPs are supposed to be 

connected mostly via ADSL connection, the backhaul capacity is significantly lower 

than the capacity of the MBS backhaul. Thus, each inclusion of a FAP into the active 

set should take the backhaul limitation into account. In addition, FAP backhaul delay is 

a new parameter considered when updating active set in our proposal since this delay is 

typically higher than the delay of MBS backhaul. 
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2.3 TEMPORARY ACCESS TO CLOSED FAP 

In LTE-A networks, the list of CSG users is defined by either a FAP subscriber or 

an operator and update of this list requires manual modification of the records in CLC 

entity (CSG List Control) [36], [10], [37]. In combination with up to four or eight UEs 

allowed to be simultaneously included in CSG list per FAP [6], it is not possible to 

update the CSG list frequently. This can be a significant limiting aspect in dense 

deployment of FAPs due to inflexible management of the CSG list. A frequent update 

can be required, for example, if visitors or guests who attend a subscriber of a FAP 

would like to access the FAP. If the subscriber is not willing to include this visitor to the 

CSG permanently (for example, due to the limited number of CSG members or due to 

the limited throughput of the FAP), the subscriber must manually include and remove 

the visitor to and from the CSG list. The manual update of a CSG list is inconvenient 

and uncomfortable for the most of the users. A solution for enabling more comfortable 

access of the Visiting UE (V-UE) to a CSG FAP is presented in [38]. The authors 

propose new message flow to handle the management of the CSG list for the V-UEs. 

The solution is based on a configuration of records stored in an operator’s CLC server. 

Nevertheless, the authors define only a general framework of the procedure with focus 

only on the core network management signaling and do not discuss details on initiation 

of the access of the V-UE to the CSG FAP and the management procedures at radio 

interface.  

Our contribution  consists in the design of the control procedure for enabling non-

CSG users to temporarily access a CSG FAP. We propose control messages and their 

flow at all involved interfaces for access of the V-UE to the CSG FAP. Two various 

approaches, in-band and out-of-band, are proposed and discussed. 
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3 MOTIVATION AND OBJECTIVES 

According to originating standards for 4G mobile networks, the small cells are 

expected to be deployed in future mobile and wireless networks to improve coverage in 

specific areas with low signal quality. By placing additional stations to the network, 

new cell boundaries are introduced. Since heavy deployment of the small cells with low 

radius is expected in 4G networks, the procedures for the user’s mobility becomes 

initiated more frequently (see Figure 1). Therefore, more often scanning of higher 

amount of entities in UE's neighborhood must be performed. Moreover, each handover 

generates some management overhead and introduces interruption in user’s 

communication. All these aspects lead to a drop of user’s throughput and QoS. This is 

getting more apparent with dense deployment of small cells. Hence, large and efficient 

deployment of the small cells requires optimizing the principles of user’s mobility 

support to ensure continuous high level of service quality.  

 

 

Figure 1.  Problem related to the dense femtocell deployment. 

Before mentioned weaknesses could be minimized or even fully eliminated by 

implementing FCS. However, deployment of FAPs introduces several problems in the 
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active set management that must be solved for efficient selection of the cells to be 

included in the active set for FCS in 4G networks with the FAPs. First, in the 

conventional FCS with frequency muting, if a UE consumes significant part of the 

resources at the FAP (e.g., due to low signal level), the same resources (at the same 

frequencies and in the same time intervals) cannot be used by the MBS included in the 

same active set. Thus, it could limit the radio capacity of the MBS.  

This situation is shown in Figure 2. The active set of the UE1 contains two FAPs 

as well as one MBS. If the FAP1 transmits data to the UE1 at frequencies corresponding 

to RB #0 to RB #6, those frequencies can be occupied by neither the FAP 1 nor the 

MBS. On one hand, the interferences IMBS-UE1 and IFAP2-UE1 are eliminated and less RBs 

can be consumed by the FAP1 to serve the UE1. On the other hand, RBs at the 

frequencies corresponding to those used by the FAP1 for delivery of data to the UE1 are 

wasted. In the case of dense deployment of the FAPs, this can lead to the situation when 

the most of the MBS’s resources are disabled from utilization due to its occupation by 

the FAPs involved in the active sets of the UEs along with the MBS.  

 

 
Figure 2. Frequency reuse constrain in case of FCS with FAPs. 

Second, if FCS is enabled, user’s data intended for each UE must be routed to all 

cells in its active set (see Figure 3). Due to the limitation of FAP backhaul, inclusion of 

FAPs in active sets should consider also the backhaul capacity of individual cell 

especially if the FAP is inactive in transmission to the UE. This situation is depicted in 

Figure 3. Data destined for the UE1 must be routed to both FAPs in the active set of the 
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UE1. Hence, the backhauls of both FAPs are loaded with all data (in our case, with 

seven packets). However, only a part of these packets is transmitted. For example, the 

packets #2 and #6 are not transmitted by the FAP1 in Figure 3. These packets are 

discarded. On the side of FAP2, only two packets out of seven are transmitted to the 

UE1. Other five packets are discarded and those only increases load of the FAP2 

backhaul. This problem does not occur in scenario with the MBSs only as the MBS 

backhaul is of a very high capacity. Nevertheless, the backhaul of FAPs is typically of a 

lower quality.  

 
Figure 3. Route of data to UE in case of FCS with FAPs. 

Third, the FAP backhaul is also of a variable quality. If two FAPs are in an active 

set of a UE, we can assume that those belong to the same operator (otherwise, the FCS 

would not be possible as user is usually subscribed only at one operator). If an MBS and 

one or several FAPs are included, we have to ensure that data will be ready at the same 

time at all FAPs and MBSs included in the active set. In real networks, it means to 

increase packet delay to the maximum delivery delay observed among all cells in the 

active set as expresses the next formula:  

}D,...,D,Dmax{D iii
A,jA,2A,1

=  (1) 

where iA,j
D  represents delay of j-th cell included in the active set of i-th UE. 

The general objective of this habilitation thesis is to minimize negative impact of 

the management procedures for mobility support on the network performance and QoS 

experienced by users. 
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Therefore, the first objective is to define algorithms for hard handover decision to 

minimize amount of initiated handovers. This way, the QoS of users and overall 

networks performance are improved. 

The second objective is to investigate possibility of FCS implementation in the 

networks with small cells and further, provide enhanced algorithm for the active set 

management considering specifics of small cells. 

Last goal is to develop mechanism for easy management of CSG list to enable 

faster deployment of CSG femtocells. This part is composed of the proposal of new 

management messages and their flow for enabling temporary access of visiting users. 
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4 SCENARIOS AND EVALUATION 

METHODOLOGY 

The performance evaluation focuses investigation of an impact of the proposed 

procedures on the network metric such as network throughput, distribution function of 

signal level experienced by users, and amount of initiated mobility events. 

All evaluations are done via simulations in MATLAB since it is common and 

universal simulation tool used for mobile networks. Moreover, MATLAB enables 

simple implementation of wide range of procedures and algorithms. All models for 

simulations and for analytical analysis are in line with models conventionally used for 

evaluation of 4G mobile networks. These models are summarized by IMT-Advanced 

[39].  

For simulation of outdoor user's movement, we consider conventionally used 

models such as Direct Movement model, also known as multiple moving mobility 

model [40]; Probabilistic Random Walk Mobility Model (PRWMM) [41]; Manhattan 

Mobility Model [42]. For indoor user's the mobility model is based on [19]. 

Street layout and deployment of all network entities follow the general 

requirements on simulations as defined in [39] and it is aligned also with the latest 

recommendations related to the small cells specifics defined by Small Cell Forum [43]. 

We consider both rural scenario with less density of users as well as corporate scenario 

with high density of users [44]. 

In all investigated areas of UE's mobility in networks with small cells, only the 

slow moving users can perform handover to a small cell. Handover of vehicular users is 

usually useless, since high-speed users spend only very short time in the small cell due 

to its low radius [16].  

In all evaluations, we assume the same 20 MHz wide channel is shared by the 

MBSs and the small cells. This channel is at 2.0 GHz for LTE-A. Transmission power 

of the MBSs and the small cells is set to 46 dBm and 15 dBm respectively. 
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Unified TDD frame structure of LTE-A release 10 is used in all simulations. The 

frame is divided into 10 subframes and 20 slots (see Figure 4). The frame duration is 

10 ms and uplink–downlink (UL–DL) configuration “1” is chosen. This configuration 

splits the frame into four downlink subframes, four uplink subframes, and two special 

subframes (SSs). The SS configuration “0” is utilized for all simulations in this 

document. Seven symbols (i.e., Normal cyclic prefix) per subcarrier and 12 subcarriers 

per one RB are considered. The spacing of subcarriers is ∆f = 15 kHz. The amount of 

bits carried in one RE depends on available Modulation and Coding Scheme (MCS), 

which is derived according to [45]. Each slot consists of RBs, which are further 

composed of REs. The number of RE per RB ( RB

REN ) is defined by the next equation: 

symb

RB

SC

RB

RE NNN ×=  (2) 

where RB

SC
N  is a number of subcarriers per RB; and Nsymb is a number of symbols 

per the subcarrier.  

 

 

Figure 4. LTE-A TDD frame structure used in the simulations. 

Seven symbols per subcarrier and typically 12 subcarriers per one RB are used for 

a normal cyclic prefix. The spacing of the subcarriers is ∆f = 15 kHz. The amount of the 

bits carried in one RE depends on available Modulation and Coding Scheme (MCS). 

The assignment of the MCS is based on the signal quality according to Table 1 (the 

values are taken from [45]). 

Downlink throughput of a user is furthermore calculated according to the 

subsequent formula: 

RB

RERBsymb

RB

SCRBDL NnNNnThr ××=×××= ΓΓ  (3) 
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where nRB is the number of occupied RBs (depending on a channel bandwidth as 

indicated in [46]), and Γ is the transmission efficiency expressed as the amount of bits 

carried per symbol.  

Table 1. Selection of MCS according to CINR [45] 

CINR [dB] MCS 

Transmission 

efficiency Γ  

[bits/symbol] 

CINRmin <CINR <= 1.5 1/3 QPSK 0.66 

1.5 < CINR <= 3.8 1/2 QPSK 1 

3.8 < CINR <= 5.2 2/3 QPSK 1.33 

5.2 < CINR <= 5.9 3/4 QPSK 1.5 

5.9 < CINR <= 7.0 4/5 QPSK 1.6 

7.0 < CINR <= 10.0 1/2 16QAM 2 

10.0 < CINR <= 11.4 2/3 16QAM 2.66 

11.4 < CINR <= 12.3 3/4 16QAM 3 

12.3 < CINR <= 15.6 4/5 16QAM 3.2 

15.6 < CINR <= 17.0 2/3 64QAM 4 

17.0 < CINR <= 18.0 3/4 64QAM 4.5 

18.0 < CINR 4/5 64QAM 4.8 

 

Algorithm specific evaluation metrics and simulation parameters are further 

defined in description of individual proposals. 
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5 HARD HANDOVER FOR SMALL CELLS 

Handover can be initiated due to several reasons, for example, to ensure QoS to 

users, to improve coverage or to balance load in networks. 

To avoid redundant handovers that increase neither network’s nor users’ 

performance, several techniques modifying condition for the handover decision are 

defined by standards or in literature. Mostly used techniques are: HM, windowing (also 

denoted signal averaging), and TTT or its enhancement known as Handover Delay 

Timer (HDT) [47]. 

While HM is implemented, the handover decision and initiation is based on a 

comparison of one or several signal parameters (e.g., CINR or RSSI) of a serving cell 

and a target cell. The handover is initiated if the signal parameter of the target cell 

exceeds the signal parameter of the serving cell at least by a hysteresis ( HM∆ ):  

HM

Ser

t

Tar

t ss ∆+>  (4) 

where Tar
ts  and Ser

ts represents the signal quality parameter of the serving and 

target cells respectively in the time instant t.  

In the case of the windowing, the handover decision is done if the average value 

of the observed signal parameter (e.g., CINR, RSSI, etc.) from the serving cell drops 

under the average level of the same parameter at the target cell (see formula (5)). The 

average value is calculated over a number of samples denoted as Window Size (WS). 

WS

s

WS

s
WS

1i

Ser

i

WS

1i

Tar

i ∑∑
== >  

(5) 

where Tar
is  and Ser

is  represent i-th sample of the level of the observed signal 

parameters at the target and serving cells respectively. 
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Implementation of the HDT is based on the insertion of a short delay between the 

time when the handover conditions are met and the time when the handover initiation is 

executed. This delay is labeled HDT. The handover conditions have to be fulfilled over 

the whole duration of HDT to initiate handover. Generally, handover is performed if: 

)HDTt,t(tss HOHO

Tar

t

Ser

t +∈<  (6) 

where HDT represents the duration of the handover delay timer; and tHO is the 

time instant when the handover conditions are fulfilled. 

These techniques perform well in the common networks without FAPs. However, 

their efficiency drops with implementation of the FAPs [9]. To overcome this problem, 

two ways of the handover decision improvement are proposed and investigated in the 

following subsections: i) adaptive techniques and ii) throughput gain prediction. 

5.1 ADAPTIVE TECHNIQUES FOR ELIMINATION OF REDUNDANT 

HANDOVERS 

First, the proposals on the adaptation of hysteresis, HDT, and WS are described. 

Then, all three adaptive techniques are evaluated by means of simulations in MATLAB 

and their performance is confronted with the conventional (non-adaptive) approaches.  

5.1.1 PRINCIPLE OF THE PROPOSED ADAPTATION TECHNIQUES 

In the conventional HM, the level of the hysteresis is constant. The adaptive HM 

is based on the modification of an actual HM∆  value according to the position of the user 

in the cell. The HM∆ is decreasing with UE moving closer to the cell boarder. It is 

presented in the next equation (defined in [13]): 





















−×= 0;

R

d
1max

4

max,HMHM ∆∆  (7) 

where max,HM∆  is the maximum value of HM that can be setup (in the middle of 

the cell); d is the distance between the serving MBS and the UE; and R is the radius of 

the serving MBS cell. 
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The parameters d and R can be easily obtained or determined neither by the 

network nor by the UE (see Figure 5). Especially when the FAPs are deployed in the 

networks, its exact position is user dependent and it is not known to the operator.  

 

 

Figure 5. Principle of adaptive hysteresis margin. 

Therefore, we propose to replace the parameters d and R by another metric that 

can be utilized more easily and efficiently. 

The most of the path loss models describe the relation between the distance d of a 

UE from a cell and a path loss (PL) in the following way: 

)d(logN)f(X~)d(PL 10+  (8) 

where X(f) represents the dependence of the path loss model on the frequency and 

other terms usually used in the models; and N is the coefficient related to the type of the 

environment. Functions X(f) and N are dependent on the individual path loss model. 

The level of the received signal strength at a specific distance (RSSI(d)) depends 

on the path loss and the transmission power of the MBS (TPst) as defined in the next 

formula: 

)d(PLTP)d(RSSI st −=  (9) 

Furthermore, the distance d can be expressed as an exponential function based on 

(8) and (9) as follows:  
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( )

)RSSI)f(XTP(
N

1

st10

10st

st

10d

)RSSI)f(XTP(
N

1
)d(log

)d(logN)f(XTPRSSI

−−

=

−−=

+−=

 (10) 

Considering (10), formula (7) can be modified in the following manner: 
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(11) 

where EXP represents the exponent (in the former adaptive HM defined by (7) 

equal to 4); and min,HM∆ is the minimum HM that can be set up (in (7) equal to 0). The 

parameters EXP and min,HM∆  can influence the performance of the HM adaptation. The 

investigation of the optimal setting of both parameters is tackled later in this document. 

The cell radius is typically defined as the distance where a minimal allowed level 

of RSSI, denoted as RSSImin, is reached. The typical value of RSSI at the cell’s edge 

equals to −90 dBm [48]. However,  in the case of the FAP, the cell radius is in order of 

tens of meters if the ITU-R P.1238 path loss model [49] is considered (see Figure 6). 

Note that the wall loss of 10 dB is included at house boundaries in Figure 6. The impact 

of the FAPs radius defined by different RSSImin on the redundant handovers elimination 

is analyzed later in this chapter.  

 

Figure 6. Cell radius over RSSImin according to ITU-R P.1238 path loss model. 
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In fact, the border of the cells are neither regular circles nor hexagons since the 

system is not distance or signal level limited but it is interference limited. Therefore, the 

shape of the cells is strongly influenced also by the interference. Hence, we further 

investigate impact of implementation of CINR instead of RSSI for calculation of the 

actual level of HM∆ . Generally, a signal level influenced by the interference and noise 

(IN) can be described according to the next equation: 

INRSSIINPLTPCINR st −=−−=  (12) 

The CINR level is in different range of values than RSSI. Thereupon, it has to be 

related to the difference between maximum and minimum CINRs in the observed area. 

Thus, the actual HM∆ according to CINR is derived as follows: 




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
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
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
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CINRCINR

CINRCINR

max,HMHM ;101max maxmin

minact

∆∆∆  (13) 

where CINRact is the actual CINR measured by the UE; CINRmin and CINRmax are 

minimum and maximum values in the investigated area respectively. 

The actual CINR of a UE can be easily measured during UE’s operation. It is 

usually performed with purpose of the handover decision and initiation. However, also 

the minimum and maximum CINR values have to be known for the utilization of the 

adaptive HM. CINRmin corresponds to the cell radius and to the CINR level at which the 

UE is able to receive data. Therefore, it is set up as a fix value for each FAP and MBS. 

CINRmax can be determined by two ways: i) measurement of CINR by a FAP at the 

point of its location; or ii) monitoring and reporting of CINR by all UEs connected to 

the given FAP and than selecting the highest CINR from all known values as the 

CINRmax. The first way implies to equip all FAPs with ability to measure CINR. Hence, 

it is not furthermore considered in the evaluations. The second approach utilizes the 

knowledge of previous CINR values in the area reported by the UEs. Since the channel 

is time variant, the time interval for selection of the CINRmax should be determined. The 

parameter CINRwin represents a number of the latest samples utilized for CINRmax 

derivation. The optimum value of CINRwin is analyzed later in this chapter. 

Analogical modification as for adaptive HM can be done for adaptation of WS 

and HDT. Even if neither WS nor HDT are directly related to the signal level, both 
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influence the time spent by the UEs under the coverage of individual cells. Therefore, 

both influence the time of the handover decision. Due to the UEs movement, the time of 

the handover decision is related to the level of the signals received from all neighboring 

cells. The derivation of the actual values for both adaptive techniques is defined by the 

following equations: 
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(14) 




























−×= −

−

min

4

CINRCINR

CINRCINR

max
HDT;101HDTmaxHDT maxmin

minact

 
(15) 

where WSmax/min and HDTmax/min are maximum/minimum levels of WS and HDT 

respectively. 

5.1.2 PERFORMANCE EVALUATION OF ADAPTIVE TECHNIQUES 

Evaluations of the modified adaptive technique are performed in the deployment 

of FAPs and MBSs along a direct street with a width of 8 m and a length of 500 m as 

defined in [44]. The vertical and horizontal distances between neighboring FAPs is 20 

and 23 m respectively. Two MBSs are deployed 500 m from the middle of the street. 

The direct movement mobility model with the speed of 1 m/s is considered for the 

determination of the users’ position. During the simulation, the users are equally 

distributed over the street width with spacing of 0.2 m. Major simulation parameters are 

summarized in Table 2.  

Two metrics for the performance evaluation are monitored: i) amount of 

performed handovers, and ii) throughput in downlink. The amount of handovers is 

obtained as a number of all initiated handovers. It means, if all conditions for the 

handover initiation are fulfilled, handover is counted no matter if it is finished or not. 

 The throughput via wireless interface is supposed to be with no limitation caused 

by the FAP backhaul connection since the FAPs are supposed to be connected to the 

backhaul through a high speed optical fiber. Full buffer traffic model is assumed in the 

simulations to determine maximum throughput of the UEs. 
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Table 2. Simulation setting 

Parameter Value 

Carrier frequency 2.0 GHz 

Channel bandwidth 20 MHz 

Noise spectral density -174 dBm /Hz 

Transmitting power of MBS/FAP 46 / 15 dBm 

Number of MBSs / FAPs 1 / 50 

Speed of outdoor UEs 1 m/s 

CINRmin −3 dB 

Number of simulation drops 25 

 

5.1.3 RESULTS OF SIMULATIONS 

Results of the performance of three adaptation techniques are presented in 

following subsections. All proposed algorithms are also confronted with the 

conventional techniques without adaptation. 

5.1.3.1 ADAPTIVE HYSTERESIS MARGIN 

Determination of the optimal RSSImin for the evaluation of the actual HM∆ is 

shown in Figure 7 and Figure 8. As the best performing RSSImin value should be the one 

enabling maximum reduction of the amount of handovers simultaneously with 

minimum impact on the throughput. Based on both figures, the derived optimum 

RSSImin is equal to −80 dBm. The figures also show that the selection of inappropriate 

RSSImin eliminates the positive effect of the adaptive HM on the amount of handovers 

(see e.g., the light blue curve with triangle marker for RSSImin = −75 dBm in Figure 7). 

Note that the x axis in all following figures in this section represents the actual value of 

HM∆  (or WS or HDT) for the conventional HM (or windowing or HDT). In the case of 

HM, WS or HDT with adaptation, the x axis expresses max,HM∆ , WSmax or HDTmax (see 

equations (7) and (8)).  
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Figure 7. Average amount of 

handovers over ∆∆∆∆HM,max for 
determination of optimum RSSImin. 

Figure 8. Average DL throughput over 

∆∆∆∆HM,max for determination of optimum 
RSSImin. 

As stated before, the significant weakness of the RSSI based definition of the cell 

edge is that the system is largely influenced by the interference. The comparison of 

different approaches of actual HM∆ derivation is presented in Figure 9 and Figure 10. 

Both figures are analogical to Figure 7 and Figure 8. The optimum interval CINRwin as 

well as the comparison with RSSI based method and the conventional fixed (non-

adaptive) HM can be observed from Figure 9 and Figure 10. 

 
Figure 9. Impact of different methods 

for determination of ∆∆∆∆HM on average 
amount of handovers. 

Figure 10. Impact of different methods 

for determination of ∆∆∆∆HM on DL 
throughput. 

The utilization of CINR can achieve the same efficiency as the determination of 

RSSImin while the CINR based approach is not so sensitive to the CINRwin since the 

impact of CINRwin on the number of handovers is negligible. Only a very low CINRwin 

leads to a decrease in the handover elimination efficiency. From the throughput point of 

view, the lower CINRwin is preferred. Nevertheless, its impact is minor. Comparing to 

the conventional fixed HM, the proposed solution reaches the same reduction of the 
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number of handovers with lower negative impact on the throughput. According to 

previous figures, roughly 25-50 samples can be determined as the optimum length of 

CINRwin.  

So far, high density of FAPs (50 FAPs along a street with length of 500 m) was 

investigated. Figure 13 and Figure 14 show the impact of the adaptive HM on the 

throughput and the amount of initiated handovers for lower densities of FAP densities 

(40 FAPs and 20 FAPs along a street with length of 500 m). Lower density of the FAPs 

increases efficiency of both conventional as well as the proposed algorithms. In terms of 

the amount of initiated handovers, the results obtained by both ways are nearly the same 

with only marginally higher efficiency of the conventional approach (less than 2% for 

low density and high hysteresis). On the other hand, the increase in throughput is 

significant even for low density of FAPs and high hysteresis (up to roughly 6%). The 

efficiency of the proposed adaptive HM with relation to the conventional one increases 

with the density of FAPs. This is important conclusion for the future when a dense 

deployment of the FAPs is expected. 

 
Figure 11. Impact of conventional and 

adaptive HM on amount of handovers 
for different densities of FAPs 

(CINRwin=50). 

Figure 12. Impact of conventional and 

adaptive HM on DL throughput for 
different densities of FAPs 

(CINRwin=50). 

Figure 13 presents the distribution of an average amount of handovers over the 

street width for different levels of min,HM∆ . The number of handovers is average out over 

all simulation drops and over the whole street length. The figure contains results for 

CINR based adaptive HM for CINRmin = −3 dB and CINRwin = 50. As can be observed, 

the amount of handovers significantly rises with the UE getting closer to the middle of 

the street since the difference among all CINRs from cells on both sides is very low. On 
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the other hand, the signal received from the FAPs at the same side as the sidewalk along 

which the UE is moving is distinctively higher than the signal from other cells. 

Therefore, the UE usually performs the handover only among adjacent FAPs. The 

elimination of the most handovers at the sidewalks is achieved even if the HM∆ = 2 dB 

while the suggested value in the middle of the street is at least 4 dB (but rather 5 or 

7 dB).  

Figure 14 illustrates the dependence of the average DL throughput over the street 

width. The drop in the throughput when the UE is moving closer to the middle is 

obvious. The decrease in the throughput results from lower CINR received if the FAPs 

on both sides are roughly in the same distance.  

Considering the results presented in Figure 13 and Figure 14, the optimum value 

on the sidewalks is ∆HM = 2 dB as it eliminates almost all redundant handovers whilst 

throughput is not influenced.  On the contrary, the optimum value in the middle of the 

street should be defined based on the priority either of the elimination of handovers or 

of the throughput. As an optimum ∆HM value should be selected roughly 5 or 7 dB. For 

this value, the number of the handovers reaches its minimum; however, the throughput 

is still decreasing uniformly. The tradeoff between elimination of the redundant 

handovers and throughput should be considered in the middle of the street.  

 
Figure 13. Average amount of 

handovers over the Street Width for 

CINR based adaptive HM. 

Figure 14. Average DL throughput of 
UEs over the Street Width for CINR 

based adaptive HM. 

As the requirements on the ∆HM,max depends on the position within the street, the 

determination of the general optimum value of ∆HM,max in (11) should be done with 

respect to the usual distribution of the users along the street. In the most cases, only the 

pedestrians are assumed to exploit open/hybrid access since vehicular users spend very 
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short time in the FAP’s cell due to higher speed. Hence, the major part of users should 

be placed on the sidewalks. Consequently, the value of 2 – 3 dB for ∆HM,max can be 

selected as the optimum value. Nevertheless, the same scenario can express also the 

boulevard where users are moving along the whole street width. In this case, ∆HM,max in 

range of 5 – 7 dB is more efficient since low values do not eliminate handovers 

efficiently enough. 

The evaluation of the optimal values of the parameters ∆HM,min and EXP are 

performed in the same scenario as all previous simulations. The ratio of the eliminated 

handovers and the relative throughput for the determination of the optimal ∆HM,min are 

presented in Figure 15 and Figure 16 respectively. The throughput as well as the ratio of 

eliminated handovers are constant until ∆HM reaches the ∆HM,min. The selection of ∆HM 

over 1dB leads to the significant elimination of handovers; however the throughput is 

also decreased at least by 2.5% per 1dB. While ∆HM,min = 1dB, only less than 60% of 

handovers are performed (i.e., over 40% of handovers are eliminated) and 

simultaneously, absolutely no negative impact on the throughput is noticed. Thus, 

∆HM,min = 1dB should be determined as the optimum value since all other values 

automatically results into some drop in throughput whereas maximum throughput can 

be still achieved for 1dB. Higher efficiency in the elimination of the redundant 

handovers while ∆HM,min = 1dB can be reached by selection of proper ∆HM,max. 

 
Figure 15. Impact of different ∆∆∆∆HM,min 
values on the amount of performed 

handovers. 

Figure 16. Impact of different ∆∆∆∆HM,min 
values on the downlink throughput. 

Figure 21 and Figure 22 show the results of the amount of performed handovers 

and the downlink throughput for the derivation of the optimum EXP value respectively. 

As can be observed from Figure 21, efficiency of the elimination of the redundant 
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handovers is influenced only very slightly by varying EXP and it is increasing with 

EXP. No improvement is achieved for EXP higher than 4. The efficiency in the 

elimination of the redundant handovers is very close to the performance of the 

conventional fixed HM for all investigated values of EXP. The impact of EXP on the 

UE’s throughput is also only minor especially for EXP ≥ 6. Therefore, the EXP from 

range (2, 4) should be determined as the optimum value. Nevertheless, the EXP 

influences the performance of adaptive HM only insignificantly and there is a trade-off 

between the amount of performed handovers and throughput. 

 
Figure 17. Impact of different EXP 

values on the amount of performed 
handovers. 

Figure 18. Impact of different EXP 

values on the downlink throughput. 

5.1.3.2 ADAPTIVE WINDOW SIZE 

As it is depicted in Figure 19, the adaptive WS leads to the significant elimination 

of the performed handovers for low number of averaged samples (roughly up to 7 

samples). Then the efficiency of the adaptive technique drops down and the handovers 

are performed more often. The decreasing efficiency for higher WS is due to the low 

radius of the FAPs. Thus, the signal received from the FAP rises and drops rapidly if the 

UE is moving. Therefore, the high WS leads to consideration of the samples obtained 

long time ago with respect to the small FAP radius and users' speed. These samples 

misrepresent the actual WS and thus the handover is initiated in improper places.  

The impact of CINRwin is only minor for a short window. The optimum WSmax for 

the adaptive WS is roughly 7 samples since the ratio of performed handovers is the 

lowest. Further, the efficiency of handover elimination is rising with CINRwin. However, 
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the results for CINRwin equal to 50 and 500 samples are very close to each other at 

WS = 7 samples. 

The ratio of the eliminated handovers behaves different for the conventional 

windowing with fixed amount of the averaged samples. In this case, the amount of the 

initiated handovers is continuously decreasing with growing WS. The efficiency 

improvement by approximately 6% is achieved if WS is increased from 7 to 25 samples. 

Comparing the conventional and the proposed adaptive windowing, Figure 19 does not 

proof any benefit in the elimination of handovers by implementation of the adaptive 

WS. 

Figure 20 presents the impact of WS on the downlink throughput. This figure 

shows no considerable difference between the adaptive and the fixed WS size if WS 

value is up to 5 samples. Then, the proposed adaptive WS with shorter CINRwin is 

preferable since it leads to a gain in throughput.  

By combining the results presented in Figure 19 and Figure 20, it can be observed 

that the optimum length of CINRwin is roughly 50 samples. Both figures further show 

some throughput gain of the adaptive WS. However this gain is at the cost of lower 

efficiency in handover elimination. Thus the adaptation of WS is not profitable 

comparing to the conventional fixed WS as it only increases complexity of the system 

and it does not introduce any considerable improvement in the performance. 

Figure 19. Impact of adaptive WS on 

the amount of initiated handovers. 

Figure 20. Impact of adaptive WS on 

average DL throughput. 
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5.1.3.3 ADAPTIVE HANDOVER DELAY TIMER 

The impact of HDT adaptation on the amount of handovers and the downlink 

throughput is depicted in Figure 21 and Figure 22 respectively. The range of the HDT 

values up to 30 s (x axis in Figure 21 and Figure 22) can be considered since only 

pedestrians are assumed to perform handover to a FAP. The vehicular users do not 

spend enough time in the femtocell to complete whole handover. 

Figure 21 shows that the most of handovers is eliminated by HDT equal to 2 s. 

Additional prolongation of HDT up to 6 s leads to moderate decrease of the handover 

amount. The HDT over 6 s does not eliminate any further noticeable portion of 

handovers. CINRwin influences the results only insignificantly if more than 10 samples 

are used. 

The conventional as well as adaptive HDTs eliminate handovers with the similar 

efficiency except the HDT = 2 s. For this value, the conventional HDT outperforms the 

adaptive one roughly by 5 %. Nevertheless, the efficiency of the handover elimination 

of both adaptive and fixed HDT can be considered as nearly the same for all other 

values of HDT.  

As can be observed from Figure 22, increasing length of CINRwin decreases users' 

throughput. Hence the shorter length of CINRwin is suggested to eliminate throughput 

drop. Comparing the fixed and adaptive HDTs, significantly more negative impact on 

the throughput is caused by the technique with no adaptation. The adaptive HDT 

enables to reach significant gain in the throughput comparing to the conventional one. 

The gain noticeably rises with HDT duration. 

Considering the results presented in Figure 21 and Figure 22, the optimum 

CINRwin is roughly 25 samples and the most efficient length of HDT is between 4 and 

6 s. The adaptive as well as fixed HDTs achieve the similar level of the handover 

elimination. Nevertheless, the proposed adaptation of HDT enables throughput gain 

between 8 % and 13% for the optimum HDT and CINRwin. 
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Figure 21. Impact of adaptive HDT on 
the amount of initiated handovers. 

Figure 22. Impact of adaptive HDT on 
the DL throughput of UEs. 

5.1.4 COMPARISON OF PERFORMANCE OF ADAPTIVE TECHNIQUES 

Table 3 summarizes the performance of all three adaptive techniques with relation 

to the conventional non-adaptive ones. It is clear that the most profitable is the 

adaptation of HDT since it increases the throughput up to 13% while the same 

efficiency in the elimination of the redundant handovers as in the case of the 

conventional techniques is retained. Also the adaptive HM is profitable; however the 

throughput gain is not so significant. In the case of the adaptive HM, the gain in 

throughput increases with FAPs density. Contrary to the both previous techniques, the 

adaptive WS does not improve network performance since it increases throughput at the 

cost of decrease in the elimination of redundant handovers. Therefore, the same results 

can be achieved by modification of the parameter WS without adaptation. Optimum 

values of EXP belongs to the interval (2, 4). For HMmin, a value of 1 dB is the most 

efficient one. As only signal level parameters are considered for the adaptive 

techniques, the same procedures can be applied also to pico/micro cells. 

Table 3. Summarization of performance of adaptive techniques 

 
Optimal 

value 

Optimal 

CINRwin 

Elimination of 

redundant HOs 

wrt non-adaptive 

Throughput gain wrt non-

adaptive 

Adaptive 

HM 
2 – 7 dB 25 – 50 Negligible decrease 

0 – 3 % for low FAP density 

0 – 6 % for high FAP density 

Adaptive 

WS 
~ 7 samples ~ 50 Decrease Increase 

Adaptive 

HDT 
4 – 6 s ~ 25 Same 8 – 13 % 
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5.2 HANDOVER DECISION BY ESTIMATION OF THROUGHPUT 

GAIN 

Algorithm using adaptation proposed in the previous section is very simple and 

requires neither any significant modification of the current standards nor any advance 

computation. In this section, we provide more complex solution for handover decision 

that is based on estimation of throughput gain acquired by performing handover to a 

FAP. This approach is further denoted as ETG (Estimation of Throughput Gain). The 

application of the novel technique involves several assumptions and requirements 

summarized in the next subsection. 

5.2.1 NOTATION AND ASSUMPTIONS FOR ETG 

To easy following the explanation of the ETG procedure, summarization of the 

parameters used in the description of ETG is presented in Table 4. 

Table 4. Notation of parameters used for description of ETG 

Symbol Definition 

cc kt ,  

Time in Cell. Mean time spent by users in the cell expressed as a time 

interval and number of signal level samples respectively. scc tkt ×−= )1( , 

where ts is the channel quality measurement and reporting period. 

outHOinHO kk ,, ,  
Index of signal samples respective to the time instant of the handover 

decision ( inHOk , ) and of hand-out from the serving FAP ( outHOk , ). 

avgfavgb ss ,, ,  
Estimated mean values of the signals received from the MBS and the FAP 

in the time interval 2,kkk HO∈ . 

FAP
C  

Maximum capacity of the FAP available for outdoor user’s limited by the 

backhaul. 

ctUEd ,  Data prepared for transmission by the UE during tc. 

HO
g  Real gain in the signal level due to performing handover to the FAP. 

estHOg ,  Estimated gain in the signal level due to performing handover to the FAP. 

estFAPestBS TT ,, ,  
Estimated transmission rate of the UE if it stays connected to the MBS and 

if it performs handover to the FAP respectively. 

estHOG ,  Throughput gain without consideration of CFAP and 
ct,UEd . 

estHOTG ,  Throughput gain taking CFAP and 
ct,UEd into account. 

Thr
γ  Relative threshold for ETG handover initiation. 

s
bps  Current bit rate experienced by the UE at the serving station. 

Thr
m  Multiplier of 

s
bps  to determine

Thr
γ ; 

sThrThr
bpsm ×=γ .   

min

conn
n  

Minimum amount of connections to a FAP that has to be performed before 
considering ETG in handover decision. 
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For implementation of our proposal, we assume the FAP's transmitting power set 

to a maximum value to maximize profit of the open access. The FAP’s power control 

procedure change transmitting power only for purposes of balancing the interference 

level in the network. It means, the power control is initiated only in the case of a rapid 

change in interference, e.g., due to neighboring FAP’s turn on/off. 

5.2.2 PRINCIPLE OF ETG 

The principle of the proposed ETG handover can be explained as follows. Let 

sb(k) and sf(k) represent the signal levels of the MBS and the FAP respectively. Both 

signals are obtained by periodic measurements and reporting of the signals transmitted 

by the MBS and the FAP. The signal level received by a UE is influenced by 

transmitting power of the MBS (denoted as Pb,Tx) / the FAP (denoted as Pf,Tx), by path 

losses (PLb, PLf), and by shadowing, fast fading, or measurement errors expressed by 

parameter ub(k) / uf(k) for the MBS / the FAP. Thus, the signal levels can be defined as: 

)k(u)k(PLP)k(s
bbTx,bb

−−=  

)k(u)k(PLP)k(s ffTx,ff −−=  

(16) 

To eliminate random effects influencing signal level at the UE, the signal 

averaging is assumed. Rectangular window 1)k(w =  for )ni,i(k w−∈ is considered 

for the sake of simplicity. Parameter nw represents the length of the window. The signal 

levels used by the UE for the handover decision are obtained according to the next 

formulas: 

)k(w)k(s)k(s
bb

∗=  

)k(w)k(s)k(s ff ∗=  

(17) 

Conventional handover decision is based on comparison of the signal levels 

received from a potential target station ( )k(s t ) with the signal level received from the 

serving station ( )k(ss ), i.e., handover is performed if: 

HMst
)k(s)k(s ∆+>  (18) 
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where 
HM

∆  represents hysteresis margin. Signal levels )k(ss  and )k(s t  

correspond either to )k(sb  or to )k(s f  depending on a type of handover as follows: 

• )k(s)k(s bs =  and )k(s)k(s ft =  for hand-in (handover from MBS to FAP); 

• )k(s)k(s fs =  and )k(s)k(s bt =  for hand-out (from FAP to MBS); 

• )k(s)k(s fs =  and )()( ksks ft =  for inter-FAP handover (between FAPs). 

In the proposed ETG handover procedure, general condition for the handover 

initiation is defined as: 

ThrHO
gg >  (19) 

where gThr is a predefined threshold for the handover initiation and gHO is a gain in 

signal level. The overall profit in the signal level achieved by handover to the FAP 

(gHO) is proportional to the area limited by )t(sb  and )t(s f  from the time instant tHO,in  

till tHO,out, as depicted in Figure 23.  

 

 
Figure 23.Gain obtained by handover to a FAP. 

The gain gHO is defined by subsequent equation: 

( )∫ −=
out,HO

in,HO

t

t

bfHO dt)t(s)t(sg  (20) 

If discrete signal samples obtained by a periodic measurement are considered, the 

user’s gain is expressed as: 
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( )∑
=

−=
out,HO

in,HO

k

ki

bfHO )i(s)i(sg  (21) 

where kHO,in and kHO,out correspond to the indexes of the signal samples obtained at 

tHO,in and tHO,out respectively. 

Parameters )k(sb , )k(s f , kHO,in, and kHO,out must be found to determine gHO. 

Parameters kHO,in and kHO,out represent the instants of the UE’s entering and leaving the 

FAP respectively. In fact, exact knowledge of kHO,in and kHO,out is not necessary. Only 

the difference, in,HOout,HOc kkk −= , is sufficient to be determined. In praxis, the 

parameter kc represents a mean time spent by users in the cell of the FAP and it is 

expressed by amount of sampling periods. 

An inaccuracy of kc determination can be caused by different movement of users 

in the cell and by the variable speed of users. Considering low coverage radius of FAPs, 

the estimation of the throughput gain should be distinctively more precise comparing to 

the MBS since the difference between minimum and maximum time spent in the cell 

varies only slightly comparing to MBSs as derived in [50] (see Appendix).  

Once kc is derived, an estimation of the MBS’s and the FAP’s signal levels 

progress must be done. The estimation means a determination of )k(sb  and )k(s f  in 

interval ( )out,HOin,HO k,kk ∈ . The precise estimation of )k(sb  and )k(s f over the whole 

interval ( )out,HOin,HO k,kk ∈  is very complicated since both signal levels are influenced 

by many random factors. For the sake of simplification and less computational 

complexity we propose to estimate the mean signal level received by the UE in the 

interval ( )out,HOin,HO k,kk ∈  from the MBS and the FAP. The mean levels of the signals 

are denoted as avg,bs  and avg,fs . An inaccuracy of the signal level estimation can be 

compensated by selection of a proper threshold gThr for performing handover to the FAP 

and by its re-adjustment as explained later in this section. 

Value of avg,bs  is obtained by an extrapolation of )k(sb   in the following way: 
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( )∑
=
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)k(ss

∆

∆

 (22) 

where maxi  is the number of the samples considered for the extrapolation; and 

)1i(ki maxin,HOmin −−= . For the evaluation of gHO,est, it is necessary also to know avg,fs , 

which is calculated in the same way as avg,bs . If both estimated signal levels and kc are 

known, the estimated gain gHO,est is derived as:  

( )( )avg,bavg,fcTest,HO sstfg −×=  (23) 

where fT represents a transformation function for selection of appropriate MCS 

according to the received signal levels (see, e.g., [45]). The MCS is commonly 

determined based on interference. However, the interference is much more variable than 

the signal strength. Therefore, we do not consider interference in our proposal and an 

estimation of the interference is left for future research that can potentially further 

improve the performance of ETG at the cost of an increase in computational 

complexity. 

So far, a limitation of FAP backhaul capacity was not considered for the 

estimation of the gain in signal level (gHO,est). Moreover, the handover should be 

performed only if the UE has data to be send during the connection to the FAP. To 

incorporate both limiting factors to ETG, gHO,est must be translated to a gain in user’s 

throughput (GHO,est) according to the next formula: 

( )( )est,BSest,FAPcest,HO TTkG −×=  (24) 

where TFAP,est and TBS,est are defined in Table 4. 

The final estimated throughput gain with respect to the backhaul limitation and 

user’s data is expressed by the following equation:  

( )est,HOt,UEFAPest,HO Gd,CminTG
c

=  (25) 

Parameters CFAP and dUE,tc are also explained in Table 4. Note that for pico/micro 

cells, the CFAP is assumed to be above GHO,est as the backhaul is dimensioned by 

operators to be able serve all radio transmissions. 
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Information on the available capacity of the backhaul of the FAP should be 

exchanged between the FAPs and the MBS. This information is delayed due to the 

transmission via FAP backhaul, which is of a lower quality than the backhaul of the 

MBSs. This delay is supposed to be roughly tens of milliseconds, which corresponds to 

the typical end-to-end packet delay for ADSL link [51], [52]. Taking into account the 

fact that only pedestrians are admitted to the FAPs, the delay of tens milliseconds leads 

to only negligible shift in users’ position (tens of centimeters). Hence, the channel 

conditions can be considered as stationary during this very short period. Thus, the delay 

only postpones the decision on handover for tens of milliseconds and the estimation of 

the throughput gain is affected only insignificantly.  

For the handover decision, throughput gain must be confronted with a relative 

ETG handover threshold ( Thrγ ). The threshold Thrγ  is related to the actual bit rate of the 

UE (bpss) and it is expressed as the multiple (mThr) of the current bit rate experienced by 

the UE at the serving MBS. This can be defined by the following equation: 

ThrSThrest,HO mbpsTG ×=> γ  (26) 

The Thrγ  is used for the elimination of handovers to the FAPs, which offer only 

moderately higher throughput than current serving station. In this case, handover is not 

profitable due to a short break in user's connection and additional signaling overhead 

introduced by the handover initiation.  

The level of an over/under-estimation of TGHO,est in real networks is 

proportionally the same for all FAPs and MBSs as it is calculated in the same way for 

all of these entities. Thus the over/under-estimation of TGHO,est can be reduced by re-

adjustment of Thrγ  if more/less handovers to the FAPs are desirable, e.g., for the 

purpose of an MBS's offloading. 

The evaluation of ETG handover conditions can be performed either once when 

the conventional handover conditions, expressed in (18), are met for the first time or 

continuously during the whole operation of the UE. In our proposal, the evaluation of 

ETG conditions is performed continuously. This way, an impact of rapid channel 

variations and an inaccuracy in signal levels estimation are reduced since these 

phenomena just postpone the handover for a certain time. In order to avoid negative 

affection of the accuracy of TGHO,est by the postponing handover due to both factors, a 
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temporary kc,t is used for derivation of TGHO,est. The kc,t is derived from kc by subtraction 

of the time interval elapsed since the conventional handover conditions are fulfilled. 

In real networks, the determination of kc is done by an observation of the time 

spend by all UEs connected to individual serving cells in the past. Therefore, the 

minimum amount of finished connections ( min
connn ) to the FAP is defined for each FAP. 

This parameter serves as a trigger for utilization of ETG handover. It expresses the 

minimum amount of inputs for derivation of kc that must be collected before the kc is 

considered as “accurate enough” to be exploited for ETG.  Hence, ETG handover is 

considered only if the amount of finished connections is equal to or greater than min
connn .  

In the case of the UE entering the area where more FAPs meet the conditions for 

handover initiation, i.e., more FAPs fulfill (26), the FAP with maximum TGHO,est is 

selected as the target one. If no FAP fulfils ETG handover condition defined in (26) 

even if min
connn  is reached, the MBS is selected as the target station. If the UE enters the 

location with more possible target stations before accurate kc for each FAP in the area is 

set up (usually at the beginning of simulation or network operation), the selection of the 

target station is based on the conventional handover algorithm. 

Since the FAPs are partially controlled by their users, an event such as occasional 

FAP’s turn-off should be addressed. In this case, the backhaul is used to inform the 

MBS and all adjacent FAPs about the change in a neighbor cell list. All adjoining FAPs 

should reinitialize the evaluation of kc and disable ETG handover until min
connn  is reached. 

Nevertheless, this event is assumed to appear very rarely and can be neglected. 

5.2.3 ANALYTICAL EVALUATION OF ETG PERFORMANCE 

For analytical evaluation, an MBS and a FAP are deployed in the scenario with 

mutual distance dMBS-FAP as depicted in Figure 24. The users are moving along a direct 

street with random distance from the FAP, denoted as dUE-FAP. The distance dUE-FAP 

represents the shortest distance between the UE's movement and the FAP during a 

simulation drop. The performance is evaluated for dMBS-FAP varying in range from 100 to 

400 m. For each dMBS-FAP, sixty drops with random speed of users, ranging between 0.97 

and 1.74 m/s [53], are performed to average out obtained results. The distance dUE-FAP is 

equally distributed for each dMBS-FAP. 
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Figure 24. Deployment for analytical evaluation. 

The outdoor users generate constant bit rate traffic during the simulations. Besides 

that, fixed indoor users are also considered to generate load of 4 Mbps to the FAP. The 

hybrid access with fifty percents of overall backhaul capacity assigned to the indoor 

users is applied. The rest of the capacity is dedicated to the outdoor users. The full 

backhaul capacity is 8 Mbps. In addition, two scenarios (1 Mbps backhaul with no 

indoor traffic and 8 Mbps backhaul with no indoor traffic) are evaluated to show the 

impact of the backhaul on the performance of the proposal. All major parameters used 

for the evaluation are summarized in Table 5.  

Table 5. Parameters for ETG evaluation 

Parameter Value 

Carrier frequency 2 GHz 

Resource blocks per channel 100 

Channel bandwidth of MBS and FAP 20 MHz 

Noise Power Spectral Density -174 dBm / Hz 

Wall Penetration Loss 10 dB 

Physical layer overhead 25 % 

Outdoor UE speed 0.97 – 1.71 m/s [53] 

 

First, an impact of mThr on the amount of performed handovers and on the 

throughput of outdoor users are depicted in Figure 25 and Figure 26 respectively. These 

figures are presented only to investigate an impact of mThr on the ETG performance. 

Therefore, all results in these figures are related to the maximum value obtained for 

individual level of offered traffic, and there is no relation to other competitive handover 

techniques. 
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The amount of initiated handovers decreases with increase in mThr until a 

minimum of the performed handovers is reached. The minimum number of handovers is 

equal to the number of handovers that have to be performed since the signal from the 

MBS becomes of a very low quality and it would lead to loosing the connection of the 

UE to the network. In other words, if no handover would be performed in this situation, 

the UE will not be able to transmit data due to high interference from the neighboring 

cells. As the results show, the amount of performed handovers depends not only on the 

ETG threshold value, but also on the traffic offered by the UEs. For higher traffic load, 

a higher multiplier of the current bit rate of the UE, mThr, must be set up to reach 

maximum efficiency in the elimination of redundant handover. This is since achievable 

gain in throughput is the multiplication of mThr and the current bit rate of the UE, which 

is related to the offered traffic.  

Contrary, an increase in mThr leads to only minor drop in the user's throughput. 

Lowering the throughput is the cost of avoiding the redundant handovers with low gain 

for users. This is due to a utilization of the channel, which is not of the best quality 

since the UE stays connected to the MBS although the signal from the FAP is better. 

Nevertheless, the impact of ETG algorithm on the mean throughput is only marginal (up 

to approximately 0.17% for mThr=10 and 4 000 kbps of offered traffic). 

Figure 25. Impact of mThr on amount of 
performed handover. 

Figure 26. Impact of mThr on relative 
throughput of outdoor user. 

As the previous results show, the efficiency of ETG depends on the traffic load 

offered by the UE and on mThr. Therefore, an optimal performance of ETG is reached by 

utilizing appropriate level of mThr with relation to the traffic offered by users. The 

optimum threshold value represents the value of mThr at which the most of handovers 

are eliminated while the throughput is still affected only marginally. In our case, it is the 
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value when the amount of performed handovers is nearly at its minimum. The optimum 

mThr is depicted in Figure 27. For determination of the optimum mThr, the tolerance of 

0.5% of performed handovers is considered, i.e., the optimum corresponds to the value 

when the amount of handovers does not exceed minimum of the performed handovers 

plus 0.5%. As the results show, the higher mThr is profitable for low traffic offered by 

the UEs. This is because of the fact that higher mThr with low offered traffic eliminates 

all handovers that would lead to only minor gain in throughput. If lower mThr would be 

set up, handovers with only minor gain would be also initiated due to low traffic offered 

by users. On the other hand, an increase in UE’s traffic decreases optimum mThr since 

even low mThr leads to the higher threshold if a user offers more traffic.  

The optimum mThr is also influenced by the backhaul capacity and by the indoor 

traffic. If more backhaul capacity is available for the outdoor UE, the optimum 

performance is achieved for higher value of mThr as low mThr would lead to a lower 

efficiency in the elimination of the redundant handovers. For the backhaul of very low 

capacity, the high mThr simultaneously with high level of the traffic offered by the 

outdoor UE is useless since the backhaul is not able to serve all user's data. Contrary, 

the higher amount of the traffic generated by the indoor UE leads to lowering the 

optimum mThr. This is due to the consumption of a part of the FAP's radio resources by 

the indoor UE. Consequently, fewer resources are available for the outdoor UE and the 

gain introduced by handover to this FAP is lower. Therefore, lower value of mThr is 

sufficient to eliminate all redundant handovers. 

In praxis, the optimum value of mThr can be determined individually for each UE 

as backhaul load, indoor traffic, and the UE’s offered traffic are known to the network. 

 
Figure 27. Optimum mThr over traffic offered by outdoor user. 
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Comparison of the ETG performance with the conventional hysteresis and with so 

called Moon's algorithm [15] is presented in Table 6. The table shows the ratio of 

served outdoor traffic and the ratio of the performed handovers. The ratio of the served 

traffic represents a proportion between the traffic load offered by the UE and the real 

traffic transferred by this UE. All results are related to the situation when no techniques 

for the elimination of the redundant handovers are used (i.e., the conventional handover 

algorithm with ∆HM = 0dB). For ETG, the results represent the values corresponding to 

the optimum threshold mThr. Note that the impact on the throughput and the amount of 

performed handovers is roughly the same for all levels of the offered traffic if the 

optimum mThr is set. The values in parentheses show the difference between ETG and 

other competitive techniques. Comparing ETG with the conventional hysteresis, the 

hysteresis can eliminate significant amount of the redundant handovers; however, it is 

associated with noticeable lowering of the user's throughput. ETG is able to eliminate 

significant part of the redundant handovers as well. Moreover, the user's throughput is 

nearly unaffected since only those handovers that promise marginal profit for the UEs 

are eliminated. Therefore, if the same ratio of the redundant handovers is eliminated by 

ETG as well as by the hysteresis with ∆HM = 5.25 dB, the gain of more than 2.5% in the 

mean user’s throughput is introduced by ETG. Another interpretation is that ETG 

eliminates about 13% more handovers comparing to the hysteresis if both techniques 

reaches the same throughput (∆HM = 3.1 dB). It means, additional roughly 47% of 

handovers are eliminated comparing to the conventional hysteresis. 

Table 6 further shows that Moon's algorithm is outperformed by the ETG very 

significantly. Moon's algorithm causes significant drop in throughput simultaneously 

with lower efficiency in elimination of redundant handovers. 

Table 6. Comparison of ETG performance with competitive algorithms 

Handover algorithm Served traffic [%] Ratio of handovers [%] 

ETG 99.87 65.66 

Hysteresis; ∆ HM = 1dB 99.99 (+0.12) 93.16 (+27.50) 

Hysteresis; ∆ HM = 3dB 99.97 (+0.10) 79.27 (+13.61) 

Hysteresis; ∆ HM = 3.1dB 99.85 (-0.02) 78.72 (+13.06) 

Hysteresis; ∆ HM = 3.75dB 99.05 (-0.82) 74.44 (+8.78) 

Hysteresis; ∆HM = 5.25dB 97.36 (-2.51) 65.78 (+0.12) 

Moon 95.81 (-4.06) 78.72 (+13.06) 
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So far, an exact estimation of the kc based on the perfect knowledge of the cell 

radius was assumed. Therefore, an impact of an inaccuracy in the determination of this 

parameter has to be evaluated to meat realistic conditions in the real networks. An 

inaccuracy is understood as an error in the determination of kc. It can be caused, for 

example, by movement of the UEs in different distances from the FAP or by variable 

speed of users. Amount of the performed handovers and the UE’s throughput over the 

deviation of kc are illustrated in Figure 28 and Figure 29 respectively. The x-axis 

represents maximum error in the estimation of kc (denoted as ε) related to the exact 

knowledge of the cell radius. The individual error in kc is then defined by uniform 

distribution in interval (-ε, +ε). Both figures show that high estimation error lowers the 

amount of the performed handovers. This implies that the high ε leads to the 

underestimation of the real gain in throughput and thus additional handovers are 

eliminated. However, this is at the cost of a drop in user's throughput. Comparing to the 

results of the competitive techniques presented in Table 6, the drop in throughput is still 

very low. Even if the estimation error is up to ±100%, the relative throughput (or ratio 

of served traffic) is decreased by additional roughly 0.85% comparing to the optimum 

determination of kc (see Figure 29). The similar results for the drop in the ratio of served 

traffic are obtained by the conventional hysteresis with ∆HM = 3.75dB (see the 

difference between ETG and hysteresis in parenthesis in Table 6. However, roughly 

65% and 75% of handovers are initiated using our proposed algorithm and the 

conventional hysteresis respectively. In addition, another 13% of handovers are not 

performed due to the error in kc and thus, only 57% is initiated. Therefore, even if error 

in kc estimation is in range of ±100%, the ETG eliminates additional 18% of handovers 

comparing to the conventional hysteresis if both causes the same drop in throughput. 

Both Figure 28 and Figure 29 further show that the impact of the estimation error 

on the throughput as well as on the amount of handovers is nearly independent on the 

offered traffic loads. 
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Figure 28.  Impact of error in estimation 

of kc on the amount of performed 
handovers. 

Figure 29. Impact of error in estimation 

of kc on throughput of users. 

5.2.4 EVALUATION OF ETG PERFORMANCE BY SIMULATIONS 

Analytical evaluations show higher performance of the ETG comparing to the 

competitive schemes. However, the performance can be influenced by determination of 

kc. Additionally, more UEs simultaneously connected to a FAP can influence the results. 

Therefore, we perform simulations for multiplied two stripes scenario with 5x5 blocks 

of flats (see Figure 30). This multiplication is used to fully exploit UEs mobility in the 

observed area. The FAPs density is equal to two FAPs per a block of twenty flats, i.e., 

10% of flats are equipped with a FAP. Flats equipped with FAPs and the FAPs' position 

within the flats are generated randomly with uniform distribution. 

 

 
 

 Figure 30. Example of simulation deployment for evaluation of ETG. 
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Each UE generates constant bit rate traffic of randomly selected level. The level 

of the offered traffic for each UE is generated according to lognormal distribution with 

mean of 100 kbps over all UEs. 

The major simulation parameters are summarized in Table 7. 

Table 7. Simulation parameters for evaluation of ETG  

Parameter Value 

Carrier frequency 2.0 GHz 

MBS / FAP transmitting power 46 / 15 dB 

Number of MBSs / FAPs 1 / 50 

Number of outdoor UEs 50 

Speed of outdoor UEs 1 m/s 

Wall penetration loss 10 dB 

Noise spectral density −174 dBm / Hz 

Speed of outdoor UEs 0.97 – 1.71 m/s [53] 

Simulation step 1 s 

Simulation real-time  10 800 s 

 

We perform also a simulation of Adaptive HM under the same simulation 

scenario and deployment to compare both proposed algorithms. The results observed 

from the simulations are summarized in Table 8. The served traffic as well as the ratio 

of handovers are related to the situation, when no technique for the elimination of the 

redundant handovers is used (i.e., ∆HM  = 0 dB and each UE is connected to the best cell 

at each time). In other words, 100% of the served traffic or handovers is the value 

reached by a simulation run with all techniques for the handover elimination disabled. 

Since each UE in the simulation offers different amount of traffic, we set constant mThr 

over the whole simulation for all UEs. Levels of mThr equal to 2 and 3 are selected since 

those reach similar level of served traffic as the adaptive hysteresis. The constant mThr is 

the simplest way of management but it also slightly decreases efficiency of the ETG. 

Particular assignment of individual mThr for each UE according to its bit rate should 

slightly reduce overall amount of the performed handovers as presented in 5.2.3. Thus 

our presented scenario is the worst case scenario form the performance point of view; 

however, it is also the simples for implementation. 

The results show similar performance of ETG and adaptive hysteresis in term of 

the served traffic. Both outperform the conventional hysteresis by roughly 1.5% of the 

served throughput. The adaptive hysteresis reaches the same level of the performed 



Hard Handover for Small Cells  

 
46 

handovers as the conventional hysteresis. Therefore, it confirms its profit in throughput 

while nearly no change in the amount of the initiated handovers is reached. This 

corresponds to the conclusion obtained by the simulations of adaptive hysteresis in 

section 5.1 for the direct street scenario. Contrary, ETG can introduce a gain in the 

amount of  the eliminated handovers even if a gain in the throughput is still ensured. If 

the conventional hysteresis with ∆HM = 3dB and ETG with mThr = 2 are compared, ETG 

increases the amount of the transferred traffic by roughly 1.4% and additional 24.45% 

of handovers is eliminated (i.e., more than double amount of handovers are eliminated). 

Comparing the conventional hysteresis with  ∆HM = 5dB and ETG with mThr = 3, the 

gain in throughput by ETG is nearly 2% and additional 19.64% of handovers is 

eliminated (roughly 85% increase in the handover elimination efficiency). 

Table 8. Simulation results for corporate scenario 

Handover algorithm Served traffic [%] Ratio of handovers [%] 

Hysteresis; ∆HM = 3dB 91.93 78.10 

Hysteresis; ∆HM = 5dB 85.43 65.36 

Adaptive Hysteresis; ∆HM,max =  3dB 93.29 78.12 

Adaptive Hysteresis; ∆HM,max =  5dB 86.97 65.66 

ETG; mThr = 2 93.28 54.67 

ETG; mThr = 3 87.27 45.72 

 

5.2.5 DISCUSSION OF BACKHAUL OVERHEAD DUE TO ETG HANDOVER 

The cooperation among the FAPs and the MBSs via backhaul must be established 

to use ETG. The cooperation is used for an exchange of information on the FAP 

backhaul status to determine maximum available backhaul capacity for the users. Only 

this information has to be delivered to the MBSs for ETG purposes and it should be 

available at the MBS in the time instant of the handover decision. Therefore, the 

reporting of the backhaul status interval should be similar to the reporting period of 

channel quality. In LTE-A, the channel quality reporting period can range between 2 ms 

and 160 ms [54]. Considering the worst case, the FAP’s load must be reported each 2 

ms, i.e., 500 reports per second must be sent to the MBS. The size of the backhaul load 

report should be in tens of bites as the report contains only the indoor traffic load and 

the maximum backhaul capacity. Therefore, the maximum overall backhaul overhead of 

ETG procedure is couple of kbps in the worst case scenario. 
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Further, an overhead can be generated due to the FAPs' switch-off or switch-on. 

For this purpose, only a message with FAP's ID is delivered to all neighboring FAPs to 

inform them about this event. Even if the amount of neighbors would be high (e.g., tens 

of FAPs), still the overhead in kilobits (tens of FAPs multiplied by tens of bits per 

message) is generated only very rarely, since frequent turning-on and off the FAP 

cannot be expected. Both parts of the backhaul overhead can be neglected considering 

the conventional backhaul capacity in megabits. 

5.3 CONCLUSION 

Two algorithms for elimination of the redundant handovers are proposed. The first 

group, adaptive techniques, is based on exploitation of only parameters conventionally 

observed and monitored by the network. As the results show, the most profitable is the 

adaptive HDT since it increases the throughput up to 13% while the same efficiency in 

the elimination of the redundant handovers as in the case of the conventional techniques 

is achieved. The adaptive HM also outperforms the conventional hysteresis. 

Nevertheless, a profit of the adaptive HM is lower comparing to the gain introduced by 

the adaptive HDT. Contrary to the both previous techniques, implementation of the 

adaptive WS does not improve network performance. On one hand, the adaptive WS 

increases throughput. On the other hand, the gain in throughput is at the cost of lower 

efficiency in the elimination of redundant handovers. Therefore, the same results can be 

achieved by modification of the parameter WS without adaptation. 

The second algorithm is based on the estimation of the UE’s throughput gain 

acquired if handover to a FAP is accomplished. This approach is applicable on 

handover performed to a small cells due to its low radius. The results show high 

efficiency in the elimination of the redundant handovers while only negligible drop in 

the users' throughput is observed. As well, the proposed handover decision algorithm 

implies nearly no additional signaling overhead transmitted by the FAP to the MBS via 

backhaul. Comparing the proposed algorithm with competitive algorithms, the proposed 

one provides higher efficiency in reducing the amount of performed handovers while it 

enables to keep higher throughput of users. 
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6 FAST CELL SELECTION 

A solution for ensuring the seamless handover consists in soft handover or FCS. 

The major difference between both solutions lies in a way of transmission between a 

UE and neighboring cells included in its active set. In the case of soft handover, all cells 

in the active set transmit data simultaneously and the receiver combines all data in a 

macro diversity manner. Contrary, FCS offers means for the UE and/or the networks to 

decide, which cell in the UE's active set is really going to send data in the next 

Transmission Time Interval (TTI). To that end, FCS selects and updates the best cell for 

the transmission at each transmission interval. Thus, the same data are not sent multiple 

as in the case of soft handover.  

Soft handover is known as a CDMA specific technique, which cannot be ported 

into OFDMA-based systems unless particular algorithms are used at the physical layer 

in order to achieve cooperation among the MBSs. FCS is actually a technique derived 

from CDMA soft handover. Consequently, its implementation into OFDMA-based 

system with small cells requires specific modification at physical layer as well. We 

focus on FCS since it implicate less complex requirements on UEs than soft handover. 

As mentioned before, FCS in networks with small cells introduces new risks 

related to the small cell radius and to the limited backhaul (in case of the femtocells). 

Therefore, we first evaluate performance of the networks with small cells to show 

whether FCS implementation to the networks with the small cells is even feasible and if 

a gain in the network performance could be expected. 

6.1 FCS IN OFDMA NETWORKS WITH SMALL CELLS 

The first requirement that the OFDMA system has to fulfill for FCS is a time 

synchronization among cells in the network, as mentioned earlier. Without proper 

synchronization, only the conventional hard handover is possible, where the UE needs 

to re-synchronize itself on the target cell after each handover. Synchronizing the system 
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allows to see FCS as a specific case of joint scheduling, where a set of cells collaborate 

in such a way that at each TTI, only the best cell in the set can schedule data toward the 

UE. In the case of TDD, the time synchronization of the small cells could typically be 

derived from the umbrella MBS. Then each cell in the active set needs to receive the 

integral data to be scheduled toward the UE. This principle introduces redundancy. 

However, it allows reaching high rates of the cell switching, without flooding networks 

with handover events. 

Because OFDMA systems such as LTE or LTE-A do not address the notion of 

soft handover with the active set of cells serving a given UE, a solution is needed to 

allow several MBSs or small cells to participate in the active set in such systems. 

Once a radio bearer is established for a UE with one cell in the data path, then it 

should be possible to add and remove additional contributing cells. This introduces the 

notion of a “serving” cell in the active set, which assumes a particular role, as opposed 

to a simple contributor cells. The standard handover procedures still apply whenever the 

serving cell in the active set is shifted from a source one to a target one. Figure 31 

illustrates required modifications for introducing FCS into LTE-A architecture with 

small cells.  

New procedures should be defined in order to allow including or removing 

contributing cells to or from the active set. When a contributor cell is added to the active 

set, then the serving gateway (S-GW) should be notified and it should duplicate packets 

toward the new cells in the downlink. Similar mechanisms must be proposed for the 

uplink so that contributing cells may take over a role in both uplink and downlink. In 

this thesis, we focus on downlink. 
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Figure 31: Possible introduction of Fast Cell Selection into LTE-A architecture. 

The serving small cell or MBS should be in charge of adding and removing 

additional contributing cells to the active set. Conventionally, this decision is based on 

measurement reports received from the UE, as it is the case for the hard handover 

decision itself. A novel algorithm for the active set management is proposed later in this 

chapter to improve efficiency of FCS. 

If the serving cell is shifted from a source one to a target one, then the set of 

contributing cells should be delivered from the source cell to the target cell as a part of 

the UE context. Once a successful handover has been achieved for a UE, then the target 

cell is free to maintain or modify the set of the contributing cells used by the former 

serving cell. 

A solution should also be proposed in order to let the contributing cells know if 

they are elected to schedule data toward the UE for a given TTI. The solutions defined 

in the context of 3GPP release 99 are CDMA specific and cannot be applied outside this 

context. The most natural solution is to let the serving cell communicate this 

information to the contributing cells on the basis of the UE measurement reports. The 

serving cell should provide (and update) the list of contributing cells to the UE for this 

report. Since we mainly assume slow moving UEs, reporting periodicity may be set low 

enough to maintain low overhead. The nature of the signal level measurement reports 

should also be a part of the report configuration.  In the simplest case, which is also the 
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most economical one in terms of uplink bandwidth consumption, only the index of the 

best cell should be sent. If a maximum number of cells in the active set is, for example, 

8 cells, only 3 bits are required for addressing those cells.  

The serving cell should exploit FCS measurement reports from the UE in order to 

decide, which cell in the active set will actually be in charge of scheduling data to the 

UE. Whenever a modification is decided in this respect, the decision should be 

communicated to the involved contributing cells. This command from the serving cell to 

the contributing cells should just include the ON/OFF boolean value, together with the 

reference of the next TTI where this update should be applied. 

Table 9 gives a summary of procedures to be added for supporting FCS in current 

OFDMA-based systems with small cells. 

Table 9. Procedures for FCS support in OFDMA-based networks with small cells 

From To Message purpose Message content 

Serving cell S-GW Add a contributing cell Identification of cell to be added 

Serving cell S-GW Remove a contributing 

cell 

Identification of cell to be removed 

Serving cell UE Define/update FCS 

measurement report 

Measurement period 

Measurement content as an index in 

pre-defined list 

UE Serving cell FCS measurement report Measured value 

Serving cell Contributing 

cell 

FCS command ON/OFF value 

Identification of next bit of data to 

be sent (if the contributing cell is 

turned on) 

 

In the following subsections, the performance of the networks with small cells is 

evaluated to show whether FCS implementation to the networks with small cells is even 

feasible and if a gain could be expected. 

6.1.1 SYSTEM MODEL FOR FCS PERFORMANCE EVALUATION 

From the performance evaluation point of view, a difference between the femto 

and pico/microcells, consists in the capacity of the small cell backhaul. To avoid of 

mixing all terms, we use the term "small cell" with meaning of the "femtocell" and 

"pico/microcell" if the backhaul is limited and unlimited respectively. By unlimited 

backhaul is understood the backhaul able to serve all radio traffic; it means, if the 
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backhaul capacity exceeds the radio capacity. In our simulations, the "unlimited” 

backhaul is represented by the backhaul capacity of 100 Mbps. 

We assume co-channel deployment of the small cell and MBSs, i.e., all small cells 

shares the same frequency bandwidth as the MBSs. This deployment is more 

challenging in term of interference mitigation as all cells interfere to each other. 

Furthermore, co-channel deployment is more efficient in spectrum usage (higher reuse 

of frequencies). 

For the evaluation, a rural scenario with fifty randomly deployed houses within an 

MBS is considered according to recommendations defined by the Small Cell Forum 

[43]. All houses are of a square shape with a size of 10x10 meters as depicted in Figure 

32. Each house is equipped with one randomly deployed small cell and one indoor UE. 

The indoor UE moves in line with the probabilistic waypoint mobility model based on 

[55]. For this model, several points of stay and a point of decision are defined. In the 

point of decision, the indoor UE randomly chooses a point of stay with equal probability 

for all points. The time spent in the point of stay is generated according to the normal 

distribution taken over from [55]. Beside indoor UEs, also one hundred outdoor UEs are 

randomly dropped in the simulation area. All outdoor UEs follow PRWMM [41] with a 

speed of 1 m/s.  

 

Figure 32. Simulation deployment and model of a house. 

 The channel models are also based on the recommendations of Small Cell Forum 

presented in [43]. The path loss is modeled according to ITU-R P.1238 and Okumura-

Hata for communication with small cells and macrocells respectively. The channel in 

simulations is influenced also by shadowing with a standard deviation of 8 dB and 4 dB 

for MBSs and small cells respectively. The transmitting power of the MBS is set to 46 
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dB while the small cells transmit with 15 dB. Wall losses of 10 dB and 5 dB per outer 

and inner walls are also considered. 

To minimize effects of randomness of all models, ten simulation drops with a 

duration of 7200 s of real-time per a drop are evaluated and averaged out. 

For data transmission, TDD LTE-A physical layer is implemented (see Section 4). 

Each user (outdoor as well as indoor) offers a constant bit rate traffic during the whole 

simulation. User's data are served in a manner that the bandwidth is fairly allocated to 

provide the same throughput for all users. For the open access, indoor as well as outdoor 

users share the radio resources and the backhaul of the small cells with equal priority. 

On the other hand, for the hybrid access, a half of the radio and backhaul capacities is 

reserved for the indoor UEs. All outdoor UEs then share the rest of the available 

capacity. The major transmission, channel, and simulation parameters are summarized 

in Table 10. 

Table 10. Simulation Parameters 

Parameter Value 

Frequency band 2 GHz 

Channel bandwidth for macro/small cell 20/20 MHz 

Transmitting power of macro/small cell 46/15 dBm 

Height of macro/small cell/UE 32/1/1.5 m 

Std. deviation of shadowing of MBS/FAP 8/4 dB 

Loss of outer/inner walls 10/5 dB 

Noise density -174 dBm/Hz 

LTE-A physical layer overhead  25% 

Speed of outdoor UEs 1 m/s 

Number of macro/small cells 1/50 

Number of indoor/outdoor UEs 50/100 

Number of simulation drops 10 

Duration of a simulation drop 7200 s 

 

Several metrics are defined for the performance evaluation: frequency of mobility 

events, handover interruption ratio, and served throughput for indoor, outdoor, and cell-

edge users. 

The frequency of mobility events is expressed as the mean interval between two 

hard handovers or two AS updates. For the hard handover, a mobility event is detected 

if the handover is performed, i.e., if the next formula is fulfilled: 
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( ) ( ) HMst tsts ∆+>  (27) 

where ts  and ss  represents the signal level measured by the UE from the target 

and the serving cells respectively. In the similar way, an event for the FCS is 

conditioned by fulfilling one of the following equations [26]: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

deltsdelts

addtsaddts
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where Tadd and Tdel represents threshold for adding and removing cells from the 

AS respectively. In the simulations, we set Tadd = Tdel as it is the most common setting 

in practice.  

The handover interruption ratio is understood as the ratio of the time spent by the 

UEs in the state of the interruption due to handover to the overall simulation time. This 

is expressed by the next formula: 
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where ih stands for the duration of the interruption introduced by the h-th 

handover or the h-th AS update; and tsim is the overall time of the observation (i.e., the 

simulation time). It is worth to mention that the interruption in the case of FCS occurs 

only if one cell is included in the AS of the UE and if the serving cell of the UE is going 

to be switched. We assume the interruption with duration meeting an IMT-Advanced 

recommendation for 4G networks. Therefore, we set the interruption to 25 ms.  

Served throughput represents the amount of really transferred users' data. It is 

observed for indoor, outdoor, and cell-edge users. The indoor users are all users located 

inside the houses (50 indoor UEs in the simulations) while the outdoor are all other 

users (100 UEs in our simulations). The cell-edge UEs are the users positioned close to 

the border of two neighboring cells. According to [32], we define the cell-edge UE as 

the user with the level of the signal from the second strongest cell (s2) within the 

threshold Tcell_edge (in the simulations, equals to 1 dB) from the signal level of the 

strongest cell (i.e., the serving cell, ss) as shown in the subsequent equation: 
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edge_cell2s Tss <−  (30) 

The amount of the cell-edge users varies in time depending on the users’ location. 

Nevertheless, the trajectories of the UEs are the same for the evaluation of hard 

handover and FCS. Thus, the amount of the cell-edge UEs is the same for both as well. 

6.1.2 SIMULATION RESULTS 

This section presents the results of hard handover and FCS obtained by the 

simulations performed in MATLAB. 

 The impact of ∆HM (for hard handover) and Tadd, Tdel (for FCS) on the frequency 

of the mobility events is depicted in Figure 33. The frequency of the events is 

proportional to the overhead due to the user's mobility (an overhead related to one 

handover or to one AS update is in order of kb [10]). As the figure shows, FCS 

introduces more events (shorter mean interval between two events) than hard handover. 

For hard handover, the amount of the events is notably reduced by higher ∆HM. 

Contrary, the thresholds Tadd and Tdel for FCS decrease the number of the events 

negligibly. Nevertheless, the overhead due to the UE's mobility is still insignificant 

since an update of the AS (i.e., few kilobits) is required less than once per 340 s even 

for very low thresholds. Note that neither access mode (open/hybrid) nor capacity of the 

small cell backhaul influence the amount of handovers since it depends only on the 

relation between the signal levels of the neighboring stations for the conventional 

handover and FCS. 

 

Figure 33. Interval between mobility events for hard handover and FCS. 
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User QoS is influenced also by the interruption due to handover. The ratio of the 

time spent by the UEs in the interruption to the overall simulation time is depicted in 

Figure 34. The overall interruption time in the case of hard handover is decreasing with 

∆HM as less handovers is performed. However, the hard handover interruption is 

significantly higher than the one accounting to FCS. FCS is able to fully eliminate the 

interruption even for very low thresholds. The interruption is critical for real-time 

services (speech or video calls) as QoS perceived by users is degraded heavily. For non-

real-time services, an impact of the interruption is nearly undetectable by the users as it 

is presented only by negligible lowering of bit rate for a very short time (up to 25 ms for 

4G networks [56]). 

 

Figure 34. Average interruption experienced by UEs due to mobility. 

The amount of the served throughput over the level of the traffic offered by 

individual types of UEs is depicted in Figure 35 - Figure 37. Each figure consists of two 

subplots showing average throughput for open (left plots) and hybrid (right plots) 

accesses. All figures contain results for the backhaul with limited capacity of 8 Mbps 

(solid lines) and unlimited backhaul with capacity of 100 Mbps (dashed lines).  

The figures confirm the fact that an increase in ∆HM for hard handover lowers the 

throughput. This is caused by keeping the UEs connected to the serving cell for a longer 

time even if a target cell is able to provide a channel with higher quality. For FCS, an 

impact of the thresholds depends on the type of the access and the backhaul capacity. 

For the unlimited backhaul, throughput increases with Tadd and Tdel for the outdoor UEs 

as more cells are included in the AS and interference experienced by the outdoor UEs is 

lowered. For the indoor UEs served by the open access cells with the unlimited 

backhaul, the throughput is limited by the backhaul and the positive impact due to an 
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increase in Tadd and Tdel is negligible. If the backhaul is limited, higher Tadd and Tdel 

decrease the throughput of the indoor UEs in the case of the open access. It is a cost of 

sharing the backhaul with more outdoor UEs who experience slight increase in 

throughput. Nevertheless, this rise in throughput of the outdoor UEs is limited by the 

backhaul capacity. For the hybrid access with the limited backhaul, an impact incurred 

by Tadd and Tdel is negligible due to a fixed allocation of the resources among the indoor 

and outdoor UEs. 

According to Figure 35, FCS is profitable for the indoor UEs if a sufficient 

backhaul capacity (100Mbps) is provided for both the open and hybrid accesses. If the 

backhaul is of a limited capacity (8 Mbps), FCS introduces a heavy loss in throughput 

of the indoor UEs for the open access. This loss is a result of fair sharing the small cell 

backhaul capacity with outdoor UEs. If the small cell provides higher channel quality 

than the macrocell, each UE is trying to transmit data via the small cell, but the 

backhaul is not able to serve the data. The hybrid access with the limited backhaul 

reaches the same performance for both FCS and hard handover as the fixed ratio of the 

backhaul capacity is reserved for the indoor UEs. 

Performance of the outdoor UEs is influenced in more positive way by FCS (see 

Figure 36). Again, FCS is profitable for all levels of the offered traffic and both 

accesses if the small cell backhaul is unlimited. For the limited backhaul, FCS increases 

throughput for the offered traffic up to 2 and 1.5 Mbps for the open and hybrid accesses 

respectively. Again, the gain of hard handover for high level of the traffic and the 

limited backhaul is caused by sharing the resources with more UEs in the case of FCS.  

Throughput of the most critical set of users, cell-edge UEs, is depicted in Figure 

37. The set of the cell-edge users mostly consists of the outdoor UEs; thus, the behavior 

of the throughput of the cell-edge UEs follows the results for the outdoor UEs. 

Therefore, FCS is profitable if a small cell is connected via the unlimited backhaul. If 

the backhaul capacity is limited, FCS outperforms hard handover only for lower offered 

traffic like in the case of the outdoor UEs. 
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Figure 35. Served throughput of indoor UEs for open and hybrid accesses. 

 

  

Figure 36. Served throughput of outdoor UEs for open and hybrid accesses. 

 

  

Figure 37. Served throughput of cell-edge UEs for open and hybrid accesses. 
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 Average throughputs observed from the results presented in Figure 35 - Figure 37 

are summarized in Table 11 and Table 12 for the limited and unlimited backhauls 

respectively. The numbers in parenthesis represent a gain/drop in throughput introduced 

by FCS with relation to hard handover. It can be observed that the average throughput is 

improved by FCS in the case of the unlimited backhaul. If the backhaul capacity is 

limited, hard handover is more efficient in term of throughput. 

Table 11. Average throughput per user for ∆∆∆∆HM = 3dB, Tadd = 3dB, and Tdel = 3dB; 
8 Mbps backhaul capacity 

Served throughput [kbps] 

 Indoor 

UEs 

Outdoor 

UEs 
All UEs 

Cell-edge 

UEs 

Hard HO Hybrid 2510.5 190.01 2700.5 1103.2 

FCS Hybrid 
2500.8  

(–0.4%) 

154.52  

(-18.7%) 

2655.3  

(–1.7%) 

661.02  

(–40.1%) 

Hard HO Open 3097.6 192.44 3290.0 1110.7 

FCS Open 
1615.4 

(–47.8%) 

172.98  

(-10.1%) 

1788.4  

(–45.6%) 

836.83  

(–24.7%) 

Table 12. Average throughput per user for ∆∆∆∆HM = 3dB, Tadd = 3dB, and Tdel = 3dB; 
100 Mbps backhaul capacity 

Served throughput [kbps] 

 Indoor 

UEs 

Outdoor 

UEs 
All UEs 

Cell-edge 

UEs 

Hard HO Hybrid 3144.7 207.28 3351.9 1111.6 

FCS Hybrid 
3186.6  

(+1.3%) 

247.81 

(+19.6%) 

3434.4 

(+2.5%) 

1557.5 

(+40.1%) 

Hard HO Open 3144.7 207.28 3351.9 1111.6 

FCS Open 
3171.6  

(+0.9%) 

264.16 

(+27.4%) 

3435.8 

(+2.5%) 

1677.4 

(+50.9%) 

 

6.1.3 DISCUSSION OF RESULTS AND SUGGESTIONS FOR MOBILITY SUPPORT 

Several general remarks and suggestions can be derived from the performed 

simulations. First, the performance of hard handover and FCS is influenced by 

hysteresis and thresholds as follows: 

• Hard handover: throughput decreases with rise of ∆HM disregarding the 

backhaul of the small cell. 
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• FCS: throughput increases with the thresholds for the unlimited backhaul, 

while it slightly decreases for the limited backhaul. 

Following remarks belong to the limitation of the small cells backhaul: 

• Unlimited backhaul capacity: FCS always outperforms hard handover. 

• Limited backhaul capacity: FCS is profitable only for the outdoor UEs 

offering lower traffic level (1.5 and 2 Mbps for the hybrid and open accesses 

respectively). 

Last, FCS is profitable for delay sensitive real-time services such as voice calls as 

it eliminates the problem of handover interruption. 

According to the above mentioned, the backhaul influences the performance of 

FCS and hard handover. In related works focused on macrocells only, FCS outperforms 

hard handover in all cases (see e.g., [33], [32], [29]). This conclusion is confirmed by 

our results for the pico/micro cells with unlimited backhaul. However, an efficiency of 

FCS can be degraded more than efficiency of hard handover if the backhaul capacity is 

limited. Then, FCS is even outperformed by hard handover for high traffic load. 

Therefore, we suggest employing FCS only in the case of low traffic offered by the UE. 

For heavy traffic offered by the UE, the UE should perform hard handover to a target 

cell if this cell is of the limited backhaul and it is not able to serve the UE according to 

its requirements. If the target cell is of the unlimited backhaul, this cell is just included 

to the active set along with the current serving cell to reduce interference. Inclusion of 

this cell should be performed as soon as possible and the cell should be kept in the 

active set for a longer time. This can be easily achieved by setting higher Tadd and Tdel 

(for example, 5 dB). 

6.2 ACTIVE SET MANAGEMENT 

As the previous section show, FCS can be efficient even in networks with small 

cells; however, the backhaul capacity needs to be considered in active set management. 

The proposed solution for a selection of the active set members (i.e., how to determine 

when a cell should be added/deleted to/from active set) is based on the calculation of 

amount of consumed radio resources and on backhaul quality consideration. As shown 

in Section 6.1, pico/micro cells outperforms conventional hard handover even with the 
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conventional active set management. Therefore, we focuses on femtocells only in this 

section. Note that the same approach can be applied also to the micro/pico cells. 

6.2.1 PROPOSED ALGORITHM FOR ACTIVE SET MANAGEMENT 

The proposed algorithm on the selection of proper members of the active set 

compares the current amount of the consumed radio resources of an MBS with the radio 

resources of the MBS consumed if a cell would be added/removed to/from the active 

set. In addition, the backhaul limitation, in term of the limited capacity and higher 

delay, is introduced in the proposed active set management procedure. 

To easy following the explanation of the proposed algorithm, summarization of 

parameters used in the description of the active set management is in Table 13. 

Table 13. Notation of parameters used for description of the proposed algorithm 

Symbol Definition 

iN  List of neighboring cells of i-th UE, },...,,{ 21

i

nc

iii
iNNNN = . 

i
A  List of cells included in the active set of i-th UE, },...,,{ 21

i

ac

iii
iAAAA = . 

ii acnc ,  
Number of cells included in the neighbor cell list and in the active set 

respectively. 

i

Aj

i

Aj ii RR
∉∈

,  
Amount of the radio resources consumed by the i-th UE if cell Cj is included 

in 
i

A  and if it is not included in 
i

A  respectively. 

α  Gain required for inclusion of a cell into
i

A . 

sj DD ,  
Delay of data delivered though cell jC , and maximum acceptable delay for 

the service experienced by the i-th UE. 

regi

avj bb ,

, ,  
Available capacity of the backhaul of jC  and the capacity required by the i-th 

UE respectively. 

i

S

i

Ajj
TT i ,, ∈

 
Throughput of the i-th UE if jC  would be added to 

i
A  and throughput 

experienced by the i-th UE from the current serving cell. 

i

jκ  
Gain in amount of the MBS's radio resources released by inclusion of jC  

into
i

A  related to the requested capacity.  

 

Let }UE,...,UE,UE{UE u21=  denotes a set of u users in the networks and 

}C,...C,C,...,C{C fm1mm1 ++=  represents the set of fmk +=  cells in the network, 

where m and f is the amount of the MBSs and the FAPs respectively. Further, 

}N,...,N,N{N i

nc

i
2

i
1

i
i=  represents the set of the neighboring cells of i-th UE. Each iN  
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consists of inc  neighboring cells. The set }A,...,A,A{A i

ac

i
2

i
1

i
i=  is composed of cells 

included in so-called active set of i-th UE. Note that 
i

A  is always a subset of iN , i.e., 

ii NA ⊆ . The amount of cells included in the active set of UEi is denoted as iac . The 

parameter iac  is known as active set size. 

The principle of the proposed algorithm is depicted in Figure 38. A new cell is 

included into iA , if all defined conditions are met. The cell is removed from the 

existing iA  if at least a condition is not fulfilled. 

 

Figure 38. Proposed algorithm for active set management. 

If i
j NC ∈  and i

j AC ∉ , then the cell can be included into the iA  if: 

i

Aj

i

Aj ii RR
∉∈

<α  (31) 

where i

Aj iR
∈

represents the amount of the MBS's radio resources consumed by the 

iUE  if the jC  would be included in the iA , i

Aj iR
∉

represents the amount of the MBS's 

radio resources consumed by the iUE  if the jC  would not be included in the iA , and α  
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represents a gain required for the inclusion of the jC  in iA . The MBS's resources are 

considered in this equation rather than the FAP's resources since each FAP is supposed 

to serve only low amount of users comparing to the MBS. Thus, any change in an active 

set influences large amount of the macrocell users but only couple femtocell users. 

Both i

Aj iR
∈

 and i

Aj iR
∉

 are derived from the reports on signal quality (e.g. SNR) 

measured by the iUE  from all cells included in iN  (see, e.g., [32]). If SNR of all cells 

included in iN  is measured, SINR can be determined. Then, SINR is mapped to a 

modulation and coding scheme (MCS) according to, for example, [45]. Each MCS 

defines a modulation and a coding rate. Therefore, an amount of bits in a RE, denoted as 

REb , can be derived as a multiplication of the coding rate (cr) and amount of bits per 

symbol of the modulation (bps), i.e., bpscrbRE ×= . Knowing amount of the radio 

resources required by the iUE  and REb of appropriate channel between the iUE  and the 

jC , the amount of the consumed resources is determined as a simple ratio of data 

intended to be sent by the UEi ( UEd ) and REb ; REUE
i bdR = . Difference in derivation of 

both i

Aj iR
∈

 and i

Aj iR
∉

 consists in consideration of the jC  in the interference evaluation. 

For i

Aj iR
∈

, the signal from the jC  is not taken into account since no cell included in the 

iA  can transmit at the same frequencies as the serving cell. Contrary, the signal from 

the jC  is included in the interference for i

Aj iR
∉

. 

Once the inclusion of the jC  in the iA  is profitable from the amount of consumed 

radio resources of the MBS point of view, the quality of the backhaul of the jC  is 

evaluated. A problem of a packet delay due to transmission via the backhauls with 

different quality is fixed as follows. To cope with the delay, we suggest an additional 

condition for inclusion of a cell into the iA as defined by the next formula: 

i

sj DD ≤  (32) 

where, jD  is the delay of data delivered though jC , and i
sD  is the maximum 

acceptable delay for the service experienced by the iUE . Note that this problem is 

common problem of the handover procedure. Therefore, it should be considered even in 

the conventional hard handover. However, the backhaul of the MBS typically provides 
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high quality of the connection with low delay and this condition is fulfilled 

automatically. 

The backhaul of the MBSs is planned to be able to serve all the data transmitted 

via the radio interface. It means the bottleneck does not appear on the backhaul of the 

MBSs. In the FAPs, the situation is exactly the opposite. Since the FAPs are supposed 

to be connected to the networks via a backhaul with limited capacity, previous 

conditions (31) and (32) are complemented by additional one focused on the backhaul 

capacity. The next condition is considered only if the jC  is a FAP. The femtocell jC  

can be potentially included in iA  only if: 

0bb req,i

av,j ≥−  (33) 

where av,jb  and req,ib is the available backhaul capacity of the j-th FAP and the 

backhaul capacity requested by the iUE  respectively.  After fulfilling (33), the jC  is 

included in temporary active set i
tempA . The i

tempA  is composed of all cells that should be 

included in iA  as those meet (31), (32), and (33). If only one UE is supposed to newly 

include the jC  into iA , then the temporary active set can be added to the iA , i.e., 

}A{}A{}A{ i
temp

ii += . If more UEs would like to include the jC  in their iA , then the 

backhaul limit is reconsidered. The cell jC  should be added to more active sets only if 

the FAP will be still able to serve all UEs as expresses the following equation: 

0bb
i
tempAj|i,i

req,i

av,j ≥− ∑
∈

 
(34) 

If (34) if not fulfilled, only iA of the selected UEs will be updated. A procedure 

for the selection of the most appropriate UEs, whose active set will be enhanced by the 

jC  should be defined. For this purpose, we define new parameter i
jκ . This parameter 

represents a ratio of the gain caused by the inclusion of the jC  to the requested 

backhaul capacity. It is defined by the next formula: 

req,i

i

Aj

i

Aji

j
b

RR ii ∈∉
−

=κ  
(35) 
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The jC  is included only to the iA of the UEs that leads to the highest i
jκ . For this 

purpose, the i
jκ  is reordered in descending order as follows: 

}},...}{{},{{)( i
j

i
j

i
jconstj

i
j maxmaxmaxsort κκκκ −==  (36) 

Then the jC  is sequentially added to the iA  for maxb,...,1i = . The maxb  is 

determined as )bmax( ; )u,...,1(b =  for which the following formula is still valid: 

0bb
b

1i

req,i

av,j ≥−∑
=

 (37) 

A specific situation, when (31) and (32) are fulfilled while (33) is not can occur. 

In this case, a FAP can provide higher throughput even if other UEs with this FAP in 

the active set could suffer from the inclusion of the FAP into the iA . Nevertheless, the 

drop in throughput of the UEs served by the FAP can be insignificant and the 

throughput of all of these UEs can be still above the one provided by the MBS. 

Therefore, the cell jC  is included into iA  even if not enough available backhaul is 

provided by the jC . The inclusion is conditioned by fulfilling subsequent equation: 

i

S

i

Aj,j
TT i >

∈
 (38) 

where i

Aj,j iT
∈

 is the throughput of iUE  if the jC  would be added to iA  and i
ST  

represents the throughput experienced by the iUE  from the current serving cell. To add 

the jC  to the iA , all UEs currently served by the jC  must still be experiencing higher 

capacity than the capacity provided by the MBS. 

Description above focuses on conditions and algorithm for inclusion of a cell into 

an active set. The opposite case, that is, removal of a cell from the active set must be 

defined. In our proposal, the jC  is deleted from the iA  if it results in lesser 

consumption of the MBS's radio resources. In other words, the jC  is removed if 

condition (31) is no longer met. Of course, the cell is removed if its backhaul capacity 

or delay changes and either (32) or (33) becomes not fulfilled. 



Fast Cell Selection 

 
66 

Selection of a serving cell is based on comparison of the signal levels measured 

by the UE. If the cell with the strongest signal measured by the iUE  can fully served 

this particular iUE , then the cell is selected as the serving. However, if even this cell 

cannot provide enough capacity, the cell providing maximum throughput is selected. 

6.2.2 SYSTEM MODEL FOR EVALUATION 

The transmission power and path loss models follows those used in evaluation of 

FCS in section 6.1. This section describes especially parameters, in which both 

simulations differ.  

Since the main objective is to assess when active set of the UEs should be 

updated, the outdoor UEs are supposed to be moving in comparison with the previous 

evaluations. The individual parameters, and values set for the evaluation of the proposal 

are presented in Table 14. The outdoor UEs are moving according to PRWMM (see 

[41]) with a constant speed of 1 m/s. All UEs transmit data according to constant bit rate 

model with a bit rate in the range from 60 kbps to 4Mbps. Each UE has different 

requirements on the delay for its services. The required delay is selected among three 

possible classes: high demands (delay of backhaul ≤ 50 ms), medium demands (delay of 

backhaul ≤ 75 ms), low demands (delay of backhaul > 75 ms). The selection of the 

delay requirements is done randomly. The probability that UE’s demands on the delay 

is high/medium/low is 5%/20%/75%.  

Table 14. Parameters and models used for evaluation of active set management 
algorithms 

Parameters Value 

Carrier frequency 2.0 GHz 

MBS / FAP transmitting power 46 / 15 dB 

Number of MBSs / FAPs 1 / 50 

Number of indoor/outdoor UEs 50 / 100 

Speed of outdoor UEs 1 m/s 

Wall penetration loss 10 dB 

Noise spectral density −174 dBm / Hz 

Size of simulation area 2000 x 1000m 

 

The FAPs' backhaul is limited to 8 Mbps for downlink and 50 % of its capacity is 

supposed to be consumed due to ADSL aggregation and signaling overhead.  

Consequently, the real available capacity of the FAP backhaul dedicated for the UEs in 
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the simulation is 4 Mbps. The delay of each backhaul is selected according to the 

measurement in a real network provided by Telkom Indonesia in [52]. To eliminate an 

effect of random variables, the simulation duration is set to 3600 seconds of real time 

and we run five simulation drops.  

6.2.3 SIMULATION RESULTS 

The results obtained by the simulations in MATLAB are split into two sub-

sections. The first one presents the results for determination of appropriate α  for the 

proposed algorithm. The second part of the results shows the comparison of the 

proposed algorithm with selected competitive proposals.  

6.2.3.1 EVALUATION OF THE PROPOSED ALGORITHM 

As Figure 39 shows, the average size of the active set per a UE over the whole 

simulation decreases with the amount of the traffic offered by the UEs. This is due to 

the limited capacity of the backhaul of the FAPs. Once the backhaul is fully utilized, the 

FAP is included into other active set(s) only if it improves the throughput of the UE and 

ensures enough capacity even for all UEs with the FAP in current active set. On the 

other hand, higher value of  α  lowers the size of the active set since lower profit must 

be achieved at the side of the MBS to include a FAP into the active set (see (32)). 

Analogically, the frequency of an active set updates (Figure 40) rises with lowering α  

or offered traffic. The active set update rate represents the average amount of changes in 

the active set of a user per a simulation step (a second). Each inclusion or removing of a 

cell into an active set represents one change. 

Figure 39. Impact of α  on active set 

size. 

Figure 40. Impact of α  on frequency of 

active set updates. 
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Besides the active set, α  influences also user's throughput (Figure 41) and so 

called capacity outage (Figure 42). The throughput is affected by α  only for higher 

offered traffic loads. All cells, even FAPs, are able to serve high amount of users 

without reaching a backhaul limit for low offered traffic. Thus, no impact of α  on the 

throughput is observed. However, if the offered traffic increases, high α  leads to the 

selection of only considerably profitable cells as candidates to be included in the active 

sets. If α  is low, each FAP is included in large number of active sets and all users 

connected to this FAP must share the limited backhaul. Note that we assume 

proportional fair sharing of the FAP backhaul capacity among all users connected to it.  

The capacity outage is understood as a time for which a UE’s requirements in 

term of throughput are not fully served. In other words, the real transferred capacity is 

lower than the traffic offered by the UE during this time. For a low offered traffic, the 

capacity outage rises with α . Contrary, the performance is slightly improved for a 

higher α  or if a heavy traffic is generated by the UEs. This opposite behavior is a result 

of a load balancing among individual cells. For a low offered traffic, a higher α  limits 

exploitation of the available backhaul of the FAP even if the MBS is not able to fulfill 

all UE's requirements. On the other hand, for a heavy traffic, low α  leads to more FAPs 

included in the active sets. Thus, more UEs share the FAP backhaul capacity and the 

backhaul limit leads to a higher number of unsatisfied UEs.  

 
Figure 41. Impact of α  on users 

throughput. 

Figure 42. Impact of α  on ratio of 

users whose requirements on capacity 
are not fulfilled. 

Based on the presented results, α > 2 is considered as the appropriate gain since 

maximum throughput and minimum amount of active set updates are generated. For the 
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purpose of evaluation of the proposal and competitive schemes, α = 2 and α = 3 are 

selected. 

6.2.3.2 COMPARISON OF COMPETITIVE ALGORITHMS 

The proposal is compared with two algorithms: conventional FCS active set 

management [27] and with the proposal on capacity based FCS active set management 

proposed in [32]. The capacity based FCS is selected for the comparison since this 

proposal outperforms any other similar proposals as presented in [32]. 

As shown in Figure 43, the proposed active set management algorithm improves 

throughput of all UEs (indoor as well as outdoor) comparing to the conventional and the 

capacity based FCS (Figure 43c). The gain in throughput rises with the amount of 

offered data by the UEs and it is nearly independent on the level of α . The throughput 

gain for the indoor users (Figure 43a) is up to roughly 28%, 17%, and 41% comparing 

to the capacity based FCS, the conventional FCS with ∆HM = 3dB and the conventional 

FCS with ∆HM = 5 dB respectively. For outdoor users, a minor gain (up to 4%) 

comparing to the capacity based FCS is notable up to 2000 kbps (Figure 43b). Then 

both schemes perform similarly. Comparing the proposal with the conventional FCS, 

the gain rises up to 20% with the offered traffic up to 2000 kbps. For the offered traffic 

over 2000 kbps, the gain gets stable and equals approximately to 7%. The rapid drop 

experienced by the proposal and the capacity based FCS at 2000 kbps is due to the FAP 

backhaul limitation and it can be explained as follows. For each FAP, a UE is deployed 

indoor in our simulation deployment. Therefore, this UE is attached to this FAP most of 

the time. Including the FAP in the active sets of other outdoor UE, the backhaul must be 

shared by all UEs with this FAP in the active set. Since the available backhaul capacity 

is 4000 kbps in average in the simulations, an inclusion of the FAP to an active set of 

any outdoor UE automatically limits the transmission capacity up to 2000 kbps.  
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(a) (b) 

 
(c) 

Figure 43. Average throughput of UEs during simulation over amount of offered 
traffic by the UEs; throughput of: (a) only indoor users; (b) only outdoor users; 

(c) all users. 

Frequency of active set updates is presented in Figure 44. Each event in the active 

set (either inclusion/deletion of a cell to/from active set) is linearly interconnected with 

certain amount of a management overhead. Therefore, these figures represent also the 

related amount of control overhead generated due to the active set management. In the 

case of the indoor users only (Figure 44a), the lowest rate of the active set update is 

reached by the conventional FCS. However, it is at the cost of significantly decreased 

throughput as presented in Figure 43a. The capacity based FCS and the proposed 

scheme performs similarly in term of the active set update rate. The sudden rise in the 

case of the proposal is again due to the backhaul limit as explained above for the 

throughput. Regarding outdoor users presented in Figure 44b, the results are exactly 

opposite. The lowest rate of the active set update is reached by the proposal. The rate of 

updates decreases with higher values of α  and with an increase in offered throughput 

for our proposal. Lower frequency of the active set updates for a higher α  or for a 
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higher offered traffic is due to a lower probability of fulfilling condition (32) or a higher 

requirements of all connected UEs on the FAP backhaul respectively. Note that 

frequency of the active set updates of the indoor users is roughly ten times lower 

comparing to the outdoor users. Thus, the proposed scheme outperforms the 

conventional FCS and the capacity based FCS roughly by 58% - 65% and by 

20% - 43% (depending on the amount of the offered traffic) respectively if overall rate 

of the active set update (indoor as well as outdoor UEs) is evaluated (Figure 44c). Based 

on the results, we can stated, that the proposal generates significantly less overhead 

comparing to the both competitive scheme. 

(a) (b) 

 
(c) 

Figure 44. Average amount of changes in active set of individual users per a 
simulation step; changes in active set of: (a) only indoor users; (b) only outdoor 

users; (c) all users. 

In Figure 45, the average size of the active set per UE over the whole simulation 

is depicted. For the indoor UEs (Figure 45a), only roughly one cell is included in the 

active set for the conventional FCS. This cell is typically a local FAP deployed in the 

same house as the UE. Signals of other cells’ (either FAPs or MBSs) are usually 



Fast Cell Selection 

 
72 

attenuated significantly due to intervening walls. Hence, these cells do not provide 

signal with sufficient quality to be included in the active set. For the capacity based and 

proposed FCS, roughly two cells are included in the active set on average. This is 

typically an MBS and the local FAP. Other FAPs provide weak signal (at least two 

walls are in between the FAP and the UE) to be included in the active set. 

For the outdoor users (Figure 45b), the active set consists of an MBS and several 

closest FAPs. The exact number of the FAPs included in the active set depends on the 

offered traffic level for the capacity based FCS. In the case of the proposed FCS and the 

conventional FCS, the number of FAPs in the active set is further influenced by α  and 

by hysteresis respectively. The average size of the active set is presented in Figure 45c. 

Note that based on standalone size of the active set can be concluded neither lower nor 

higher active set size is profitable. This parameter just show typical amount of cells 

involved in the active set communication, which can be further used, for example, in 

optimization of cooperative communication. 

(a) (b) 

 
(c) 

Figure 45. Average amount cells included in active set for: (a) only indoor users; 
(b) only outdoor users; (c) all users. 
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Last set of figures (Figure 46a - c) presents the impact of individual FCS 

algorithms on the ratio of the time, when the user's requirements on capacity are not 

fulfilled. Comparing the indoor (Figure 46a) and outdoor (Figure 46b) UEs, the 

satisfaction of the outdoor UEs is lower comparing to the indoor UEs. The reason is that 

the indoor UEs are usually not limited by the radio capacity. The bottleneck is typically 

located on the FAP backhaul, which is of a higher capacity comparing to the radio 

capacity of an MBS. 

(a) (b) 

 
(c) 

Figure 46. Average ratio of time spent in the state when UEs requested capacity is 

not fully provided for: (a) only indoor users; (b) only outdoor users; (c) all users. 

The profit achieved by the proposal rises with offered traffic load and it is almost 

independent on the value of α  for the indoor users. The improvement is up to 13%, 7%, 

and 12% when compared to the conventional FCS with 3dB hysteresis, the conventional 

FCS with 5dB hysteresis, and the capacity based FCS respectively. For the outdoor 

UEs, the maximum profit (50%) is reached for 100 kbps of the offered traffic if 

comparing the proposal with the conventional FCS. The performance of the capacity 

based and the proposed FCS is roughly the same for the outdoor users. Nevertheless, the 
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proposed algorithm is outperformed by none of both competitive algorithms for all UEs 

(indoor and outdoor) and for all offered traffic levels. The efficiency of the proposal 

comparing to both competitive schemes consists in more efficient selection of the cells 

included in the active sets of individual UEs. 

Besides the capacity constrain for the backhaul of the FAPs, also a delay outage 

should be tackled. By the delay outage is understood the situation when a UE's 

requirements on the delay are not met. Our proposal suppresses the outage delay to the 

minimum achievable level. This minimum is given by occurrence of the situations when 

none of the neighboring cell is able to provide sufficient delay. However, this problem 

is not related to FCS active set management. The delay outage of the competitive FCS 

schemes depends on the quality of the backhaul of the FAPs. During our simulations, 

the delay outage for both competitive FCS schemes was roughly in range of 1 - 2.5 % 

above the outage of our proposed scheme, which reaches the delay outage under 1% 

even for heavy traffic load. Note that the delay outage introduced by our scheme is only 

due to the overloading of the system by high amount of offered traffic by the UEs. 

6.2.4 CONTROL INFORMATION FOR THE PROPOSED ACTIVE SET 

MANAGEMENT 

To enable FCS in networks with FAPs, exchange of control information among 

the FAPs and the MBSs must be defined. Information on the backhaul quality and the 

FAP's radio quality must be reported to the serving cell. However, the quality of the 

radio channel is periodically reported for common handover purposes. Therefore, no 

additional overhead is introduced by the proposed algorithm in term of information on 

the radio channel quality.  

Each FAP is aware of its approximate backhaul quality as it needs this 

information to schedule users' data over the backhaul. Moreover, estimation based on 

the latest experienced backhaul quality can be considered. Nevertheless, the information 

on the backhaul quality must be delivered to the serving cell, which is supposed to take 

control over the handover decision. Thus, each potential candidate for inclusion in an 

active set should report the available capacity and the packet delay to the serving cell. 

The reporting of the backhaul quality can be included in the control information for the 

coordination of the MBSs and the FAPs.  
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The information on the backhaul delay can be provided in form of the range of the 

delays related to the experienced service class. It means, the delay does not need to be 

reported as an exact number but only as an index representing appropriate range of  the 

delays. Therefore, its size is only of several bits. For example, 4 bits enable to 

distinguish 16 classes, which is sufficient number, higher than amount of classes used 

by IP protocol or in LTE-A. The information on the capacity should be expressed as an 

absolute amount of available resources. The number of bits required for this information 

depends on accuracy of reporting information. Sufficient amount is 16 bits as it enables 

to distinguish 2
16

 levels of the available capacity (for example, it is the resolution of 4 

kbps for 16 Mbps backhaul).  

Transmission of the information on the backhaul quality can be either triggered by 

a handover request or periodical. The drawback of the handover triggered reporting is 

an additional delaying of handover (in tens of ms) due to delivering information on the 

backhaul status to the serving cell. However, its overhead is negligible since only few 

additional bits are transmitted per a handover. On the other hand, the periodic reporting 

does not delay handover but it increases signaling overhead. The maximal amount of  

the overhead generated during the periodical reporting can be determined as follows. 

The bit rate necessary for the reporting can be expressed as: 

rep

ri

rep
T

S
BR =  (39) 

where Sri is the size of the reported information and Trep is the interval between 

two reports. The maximum size of a report is 16+4 bits as stated earlier. The minimum 

reporting period is supposed to be equal to the frame duration, which is 10 ms in LTE-

A. Then the maximum reporting overhead is 2 000 bps. This amount of the overhead is 

still negligible comparing to the expected backhaul capacity in Mbps.  

Like in the conventional FCS or in the capacity based FCS, information on status 

of the radio resources (muted or not) must be forwarded by the serving cell to all cells in 

the active set. This information is carried in the FCS command message (see Table 9). 

Note that the information on occupied resources is delivered to the cells in the active set 

even in the conventional FCS. Therefore, the only difference in the overhead is in 

delivery of the information on muting. The information on muting for each cell in active 

set is represented by one bit (just on or off is indicated). Considering average size of the 
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active set around two cells (see Figure 45), the overhead due to our proposal is up to 0.2 

kbps (2 cells reported once per 10 ms frame). Even if this message introduces additional 

overhead, the overhead is increased only negligibly related to the conventional FCS 

(difference of tens of bps). Contrary, the overhead is even slightly lower (again only 

tens of bps) than in the case of the capacity based FCS since the active set size of our 

proposal is lower (see Figure 45). 

6.3 CONCLUSIONS 

In this chapter, first, we investigate the performance of FCS and hard handover if 

the small cells, connected to the network via either limited or unlimited backhaul, are 

considered. The results show slight increase in the amount of mobility events (AS 

updates) if FCS is used. On the other hand, FCS fully eliminates the interruption due to 

the user mobility. Therefore, FCS is profitable for real-time services such as voice calls. 

In term of the throughput, FCS introduces significant gain for all UEs for the unlimited 

backhaul capacity, i.e., for the pico/microcells. This confirms observations presented by 

other researchers for the scenarios with macrocells only as the only difference between 

the macro and the pico/micro cells consists in the cell radius. On the other hand, the 

throughput is improved by FCS only for the outdoor UEs offering low throughput up to 

2 Mbps if the backhaul capacity is limited (that is, for femtocells). Therefore, if the 

small cells are deployed, the conventional FCS can even decrease performance in term 

of the throughput if the backhaul capacity is not considered in the active set 

management. Hence, algorithms for mobility support should be aware of the available 

capacity of the small cell backhaul to maximize the throughput of users. 

Based on the observation of the FCS's performance, the algorithm related to FCS 

active set management considering backhaul limitations introduced by deployment of 

FAPs in networks is designed. The proposed algorithm is based on comparison of the 

amount of MBS's radio resources consumed if a cell is included to the UE's active set or 

not. The simulation results show notable increase in throughput for indoor as well as 

outdoor users. Simultaneously, the amount of generated overhead is significantly 

reduced by the proposal. Moreover, the proposed algorithm reduces the time, when 

users are not fully satisfied with experienced capacity and delay.  

As the simulations show, the most efficient active set always contains an MBS. 

For indoor users, the closest FAP deployed in the same house should be included as 
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well. The amount of FAPs included in the active set together with MBS for outdoor 

users depends on mutual distance between the UE and neighboring FAPs. Further, the 

number of FAPs slightly varies with offered traffic level. In average, roughly 1.3 FAPs 

and 1.5 FAPs are included in active set of outdoor UE for low/high traffic level and for 

medium traffic (100kbps - 1500 kbps).  
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7  TEMPORARY ACCESS TO CLOSED FAP 

This section addresses the problem of a dynamic management of a CSG list of a 

closed FAP (denoted as CSG FAP). The goal is to ensure simple and easy management 

of “adding” or “removing” new UEs, so called "Visiting UEs", to or from the CSG list. 

The reference scenario is depicted in Figure 47. Users included on the CSG list of a 

CSG FAP are denoted as CSG UEs. 

 
 

Figure 47. Reference scenario for management of visiting users. 

Each UE is aware of all CSG FAPs that this UE can access. These CSG FAPs are 

included in each UE's CSG whitelist. The whitelist is a combination of Allowed CSG 

list and Operator CSG list. The former one is under control of both the operator and the 

user, while the latter one is under exclusive control of the operator (for more 

information, see [38]). Both lists should be stored in the UE's USIM (Universal 

Subscriber Identity Module). Each UE can access all CSG FAPs included on at least 

one of the lists. Therefore, if the CSG FAP in the UE's range is listed in the whitelist, 

the conventional procedures for connection control defined in [58] are performed. In 

this paper, we focus on the scenario when the CSG FAP is not included in the UE's 

whitelist but the UE still would like to access this FAP. In this case, the UE must obtain 

permission from a subscriber of the CSG FAP. By the CSG FAP subscriber is 

understood a user with the CSG FAP in its whitelist and with permission to allow/deny 
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access of the V-UEs. In the simplest way, the user who is the operator's signed 

subscriber (denoted as Primary UE in this chapter) should be the user in charge of the 

CSG list management. Besides the Primary UE, a list of potential users with permission 

to control the CSG list of admitted UEs should be defined in case the Primary UE is out 

of the CSG FAP range or if the Primary UE is willing to grant such rights to other 

members of the CSG list (e.g., other members of the family or selected employees). 

If a V-UE moves close to a FAP and the V-UE is able to receive and recognize an 

identity of this cell, it also receives information about CSG status. This means, the V-

UE is able to determine whether this FAP utilizes closed or open access. This is 

indicated by a CSG indication flag set to "true" broadcasted by each FAP together with 

other information (see [36]). If the UE would like to perform handover to this cell, it 

should conduct a measurement of the signal level received from this CSG FAP. 

Handover can be performed even if no measurements are reported to the network. 

However, this introduces a risk of the UE’s disconnection or QoS degradation if the 

CSG FAP signal is interfering heavily to the UE connected to another cell. Therefore, 

even if the measurement is optional, it is recommended to perform the measurement 

before the handover initiation. The current 3GPP standards imply exclusion of CSG 

FAP from signal measurement and reporting if no CSG FAP is in the UE’s whitelist 

(see [10], [36]). Therefore, a modification enabling the UE to measure and to report 

signal to the network even if no CSG FAP is included in its whitelist is necessary. For 

the inclusion of such a CSG FAP in measurement and reporting, we introduce a new 

flag MeasCSGFlag. The MeasCSGFlag is kept in the USIM of the UE along with the 

whitelist. This flag can be set either manually by the V-UE, if it is willing to enter a 

CSG FAP or automatically by the network if a strong interferer for a long time is noted 

by the V-UE and the network expects handover to this FAP. 

7.1 CONTROL PROCEDURE ENABLING ACCESS OF V-UES 

In this section, the general framework of the management message flow is 

outlined. Furthermore, two approaches, in-band and out-of-band, are described in more 

detail.  

7.1.1 GENERAL FRAMEWORK 

The general overview of the proposed CSG management is depicted in Figure 48. 

If a V-UE detects a CSG FAP, it can try to enter this FAP. In the conventional way, the 
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V-UE’s attempt to enter the CSG FAP without permission would be rejected as both the 

FAP and the network consider this request as unjustified. Therefore, the request from 

the V-UE must contain a new flag, "Not Allowed" ("NA"). This flag indicates that the 

V-UE is aware of the fact that it cannot access this CSG FAP, and that the V-UE applies 

for negotiation of access to the CSG FAP.  

After that, the FAP, in cooperation with the network, finds an appropriate user 

who has the right to accept or deny the V-UE request (i.e., the Primary UE or its 

representative is found). The selection of the Primary UE is done only among CSG FAP 

users with permission to grant the access. Among those UEs, the one with the highest 

priority for CSG list management out of all CSG UEs in FAP's range is chosen. This 

selected UE (shown as Primary UE in Figure 48), is asked if the V-UE can be admitted 

to the CSG FAP. The Primary UE then either approves or rejects this request. If the 

access of the V-UE is accepted, the Primary UE must provide an input for 

authentication purposes and a Class of V-UE. The authentication input is understood as 

a definition of access password for verification of the V-UE. The Class of V-UE stands 

for set of limitations for the V-UE (e.g., bandwidth limit, overall amount of transferred 

data, restriction of some applications or services, duration of the access, etc.). Note that 

observance and enforcement of Class of the V-UE is in charge of the FAP. 

The restrictions set by the Primary UE are then negotiated with the V-UE. Also, 

the V-UE is asked to verify its identity by password. The handover to the CSG FAP can 

be initiated only if the password entered by the V-UE is identical to the one provided by 

the Primary UE and if the V-UE accepts all restrictions and conditions set in the Class 

of V-UE. 

 
 

Figure 48. General outline of the procedure for V-UE entering the CSG FAP. 
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This new scheme can introduce potential problem related to malicious attacks 

when a UE could continuously try to enter a CSG FAP. This can be easily avoided by 

definition of a minimum interval between two consecutive requests to enter the CSG 

FAP issued by the same V-UE. Beside, also a blacklist of UEs with restricted access the 

CSG FAP should be established. This blacklist should be under control of the CSG FAP 

and the Primary UE. 

Two options of management of the V-UE access are proposed in the following 

subsections: In-Band (IB) and Out-Of-Band (OOB). The first one assumes signaling for 

handling the V-UE entry within a conventional band used by the UE for all types of 

communications (including data) with the network. The second one requires other radio 

technology, such as Bluetooth, for the signaling.  

7.1.2 IN-BAND APPROACH 

The flow of control messages for admission of the V-UE to the CSG FAP with 

utilization of IB is depicted in Figure 49. Both signaling over radio and backhaul are 

illustrated. If the V-UE is able to detect the CSG FAP, it sends a request for access to 

this FAP. The request is transmitted to the serving MBS since communication with the 

FAP is not yet established. If the "NA" access is indicated by the V-UE, the MBS 

forwards the request to the CSG FAP via backhaul. The FAP then transmits the V-UE 

Request message to the Primary UE. This message contains only identification of the V-

UE to minimize redundant signaling overhead. Note that structure and detailed content 

of all new required control messages is presented in the next section. 

The Primary UE can either grant or deny the request using a V-UE Response 

message. This message contains the ACK or NACK indication (grant or deny). If ACK 

is present, then the Primary UE can define additional requirements or limiting 

conditions for using the CSG FAP (Class of V-UE). Moreover, a password for 

verification of the V-UE must be included in this message. This message is further 

forwarded to the V-UE through the FAP, the FAP backhaul, and the serving MBS. For 

security reasons, the password is not forwarded by the FAP. This means, the password 

is delivered only from the Primary UE to the CSG FAP and then it is removed from the 

message.  

After reception of the V-UE Response, the V-UE enters either the password with 

acknowledgment or rejection of the Class of V-UE set by the Primary UE. This 
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feedback is delivered to the CSG FAP via the serving MBS in V-UE Info message. Note 

that the V-UE Response and V-UE Info messages can be exchanged more than once if 

the agreement on Class of V-UE is not agreed in the first round. The CSG FAP then 

compares both passwords. If both passwords are identical, the FAP confirms admission 

of the V-UE to the Primary UE and to the network by means of a V-UE Confirm 

message. Based on this message, the network includes the V-UE on the list of UEs with 

access to this CSG FAP and handover can be initiated. To avoid a security risk, the 

conventional authorization and security procedures are performed during handover. It 

means, even if an attacker obtain permission from the Primary UE, it has to pass 

network authentication and authorization procedure before it can communicate with the 

network. 

 
 

Figure 49. Flow of control messages for V-UE access using IB approach. 

Since the temporary agreement on enabling the V-UE access to the CSG FAP 

does not imply any commitments to allow access in the future, no update of the 

whitelist in the V-UE is performed. After an expiration of the granted access, all new 

records in the CLC must be deleted. Therefore, a timer must be run to ensure deletion of 

such records. Update of the whitelist in USIM of the V-UE is necessary only if the 

Primary UE indicates unlimited access grant for the V-UE (note that this is not 

indicated in Figure 49 since we focus mainly on temporary access). 
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7.1.3 OUT-OF-BAND APPROACH  

Another option for managing V-UE access is to use OOB communication since 

nearly all mobile devices available at the market are equipped with a short-range 

communication technology such as Bluetooth. If the V-UE comes to the vicinity of the 

CSG FAP and if the Primary UE is in the range of OOB communication technology, the 

V-UE can initiate the procedure via OOB by transmission of V-UE Request (see Figure 

50). This message is sent via OOB directly to the Primary UE with the same content as 

in the case of IB communication. The Primary UE can either accept or reject the V-UE 

by a V-UE Response. In the case of accepting the V-UE request, a password and 

additional limitations can be set by the Primary UE in the same way as for the IB 

method. The confirmation of those requirements is sent by the V-UE together with the 

password in V-UE Info. Again, the V-UE Response and V-UE Info messages can be 

exchanged until an agreement on Class of V-UE is reached. If the OOB is used, the 

Primary UE is responsible for verification of the V-UE authenticity. Like in Bluetooth 

pairing, the password from the Primary UE to the V-UE is not transmitted via radio. 

The Primary UE delivers the password to the visiting user personally (the primary user 

says it or writes it down to the visiting user). Once the V-UE agrees to the conditions 

defined by the Primary UE and both entered passwords match, the final 

acknowledgment is sent to the V-UE in V-UE Confirm. At the same time, the Primary 

UE informs the CSG FAP of the temporary inclusion of the V-UE to the list of UEs 

with enabled access (V-UE Confirm) and of Class of V-UE (V-UE Response). The CSG 

FAP forwards V-UE Confirm to the CLC via backhaul. Handover can be initiated by the 

serving MBS after the reception of CLC update confirmation. Note that all conventional 

authorization and security procedures are performed during handover to avoid security 

risks as explained before for the IB approach. 
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Figure 50. Flow of control messages for V-UE access using OOB approach. 

7.2 MANAGEMENT MESSAGES FOR VISITOR ACCESS 

In this section, a content of new management messages and comparison of IB and 

OOB are presented. 

 For both approaches of handling V-UE access, four new messages must be 

designed: V-UE Request, V-UE Response, V-UE Info, and V-UE Confirm. Each message 

starts with a message ID to distinguish its purpose. The second part of all messages is an 

identification of the V-UE by 64-bits IMSI (International Mobile Subscriber Identity).  

The V-UE Request message contains both IDs (message and V-UE). Optionally, 

also a name of the V-UE assigned by the user can be included. This field is not 

indicated in Table 15 as it just increase overhead and it is not necessary for successful 

V-UE entry. The content of the V-UE Request message is presented in Table 15.  

Table 15. Structure of V-UE Request message 

Message field Size Description 

Message ID TBD Identification of the message 

ID of V-UE  64 bits Identification of the V-UE by IMSI 

 

The second message, V-UE Response, is presented in Table 16. This message 

contains identification of the message and identification of the V-UE like the V-UE 

Request. Further, ACK/NACK of the access is indicated. If access is granted, a 
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password must be included for IB communication. For OOB, the password is told to 

V-UE by Primary UE and it is carried neither in OOB not in 4G channels for data 

communication. The length of the password field depends on the encrypting algorithm 

and the password length. The password can be followed by optional conditions, 

restrictions, or duration of the V-UE access defined in the Class of V-UE. The length of 

this field depends on the amount of restrictions and conditions set by the Primary UE. 

Table 16. Structure of V-UE Response message 

Message field Size Description 

Message ID TBD Identification of the message 

ID of V-UE  64 bits Identification of the V-UE by IMSI 

ACK/NACK 1 bit ACK ... access of the V-UE enabled 

NACK ... access of the V-UE disabled 

Password Variable Password for verification of the V-UE 

Class of V-UE Variable Defines restriction to the V-UE and duration 

of granted access 

 

The next message, V-UE Info, is presented in Table 17. This message is a 

feedback from the V-UE to the V-UE Response.  Beside the IDs of the message and the 

V-UE, the additional field, ACK/NACK, is mandatory. It indicates whether the V-UE 

accepts the condition for the FAP’s access defined by the Primary UE. If the conditions 

are accepted, the field with the password is included just after the ACK/NACK field. 

Table 17. Structure of V-UE Info message 

Message field Size Description 

Message ID TBD Identification of the message 

ID of V-UE  64 bits Identification of the V-UE by IMSI 

ACK/NACK 1 bit ACK ... acceptation of Class of UE  

NACK ... rejection of Class of UE 

Password Variable Password for verification of V-UE's 

 

The last message, V-UE Confirm, is presented in Table 18. This message ends the 

process of granting the V-UE access to the CSG FAP. In addition to the message ID and 

the ID of the V-UE, 9 bits with the FAP’s ID is included. We suppose to use the same 

indicator as the Physical Cell ID (PCI). The PCI distinguishes up to 504 cells [58], thus 

9 bits are required for the FAP identification. This ID is included just for CLC purposes 

(CLC always contains pairs - ID of the CSG FAP and related ID of the admitted V-UE). 
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Finally, information on the duration of the access to the CSG FAP is presented in the 

message. This information must be delivered to the network to ensure deletion of the 

record from the CSG list in CLC after an expiration of the access grant. 

Table 18. Structure of V-UE Confirm message 

Message field Size Description 

Message ID TBD Identification of the message 

ID of V-UE  64 bits Identification of the V-UE by IMSI 

CSG FAP ID 9 bits Identification of the FAP, the same number 

as the FAP's Physical Cell ID can be used.  

Access grant 

duration 

TBD Information on duration of enabled access to 

the CSG FAP. 

If this field equals zero, unlimited access is 

indicated. 

 

Comparing IB and OOB, the latter one imposes a lower amount of signaling 

overhead on radio interface and backhaul links than IB (five messages are transferred 

via IB radio and backhaul instead of thirteen). Contrary, OOB requires enabled OOB 

communication technology on both UEs (V-UE and Primary UE). Therefore, the OOB 

could negatively influence the battery lifetime of both involved devices due to the need 

of other additional radio communication technology. It means there is a trade-off 

between battery life-time and signaling overhead. Nevertheless, the OOB is used only 

for a very short time before entering CSG FAP (up to few minutes). As well, only 

negligible overhead is generated by this procedure (up to few kilobits). Hence, 

appropriate way can be arbitrary selected according to users and/or operators 

preferences. 

7.3 IMPACT OF THE TEMPORARY V-UE ACCESS ON THE 

V-UE'S PERFORMANCE 

The proposed management of the temporary V-UE access allows to change the 

access mode for a V-UE. It means, a closed FAP becomes temporary the open FAP for 

the V-UE. Therefore, change in performance of the V-UE corresponds to the difference 

between the open and closed accesses. This problem has already been investigated, for 

example, in [1] and results demonstrate a gain in throughput due to the open access if 

the UE is close to the FAP. Therefore, we show only illustrative impact of the 
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temporary V-UE access on its SINR (Signal to Interference plus Noise Ratio) measured 

by the V-UE.  

For evaluation, we consider model with an MBS and a FAP deployed in mutual 

distance denoted dMBS-FAP. The MBS and FAP transmit with 46 and 15 dBm 

respectively. Signal from the MBS is propagated according to the Okumura-Hata model 

while signal inside the building follows ITU-R P.1238 model as recommended by Small 

Cell Forum for residential buildings in small to medium city [43]. The building is of a 

rectangular shape with a size of 10 x 10 m. Carrier frequency of 2 GHz and noise with 

density of -174 dBm/Hz are also considered for signal propagation. As the FAP is 

placed in the middle of a building, wall attenuation of 10 dB is taken into account for 

communication between the V-UE and the outdoor MBS.  

Cumulative density function (cdf) of SINR experienced by the V-UE if the access 

to the closed FAP is disabled or enabled is depicted in Figure 51. The SINR is derived 

for 121 normally distributed positions of the V-UE inside the building and for 500 

values of dMBS-FAP distance. The dMBS-FAP is also normally distributed in the range from 0 

to 500 m. If the V-UE cannot access the closed FAP and stays connected to the MBS, it 

suffers from heavy interference incurred by the FAP. In this case the observed SINR 

varies only between -30 dBm and 12 dBm. Consequently, the V-UE is not able to 

receive signal from the MBS with sufficient quality most of the time. However, if the 

V-UE is temporarily admitted to the FAP, its SINR improves dramatically. To be more 

specific, SINR measured by the V-UE is in a range of -10 dBm and 30 dBm.  

 

 
Figure 51. SINR experienced by V-UE if temporary access is not enabled (dashed 

blue line) and if the V-UE is enabled to access this FAP (solid red line).  
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As could be expected, higher dMBS-FAP distance reduces signal quality observed by 

the V-UE from the MBS as shown in Figure 52. This figure depicts average SINR 

measured by the V-UE at 121 normally distributed positions within the building. 

According to the results presented in Figure 52, the temporary access of the V-UE 

should be applied especially in the case when the signal from the MBS is weak 

comparing to the signal of the FAP. On the other hand, if the FAP is close to MBS 

(distance up to 60 m), it is better for the V-UE to stay connected to the MBS. This is in 

compliance with fact that the deployment of the FAP is advantageous mainly for 

location with weak signal quality from the MBS. 

 
Figure 52. SINR experienced by V-UE over distance between MBS and FAP if 

temporary access is not enabled (dashed blue line) and if the V-UE is enabled to 
access this FAP (solid red line). 

7.4 CONCLUSIONS 

This chapter introduces new procedure to enable temporary access of a visiting 

user to the CSG FAPs. Contrary to the existing solutions, the new one is convenient for 

frequent update and easy management of the CSG list. For this purpose, we have 

defined chart flow of control messages as well as their content for IB and OOB way of 

the V-UE access management. Signaling overhead introduced by the new procedure is 

only few kilobits per access and can be neglected. Since both approaches still exploit 

full conventional authorization and security procedures before the V-UE is admitted to 

the CSG FAP, increased security risk is introduced by non of both ways of 

management. 
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8 CONCLUSIONS AND FUTURE WORK 

This thesis is focused on management of problems related to the mobility of users 

in mobile networks with small cells. Three major topics are addressed: hard handover, 

fast cell selection, and temporary access to closed femtocells. 

In the area of hard handovers, two algorithms for elimination of redundant 

handovers are proposed. Both proposed schemes differ in its requirements on 

modifications of current standards. While the first scheme, adaptive techniques,  

exploits only conventionally observed and monitored parameters, the second one, ETG, 

requires estimation of user's throughput. The second scheme significantly outperforms 

the first one in both user's throughput and efficiency in elimination of redundant 

handovers. However, it is at the cost of higher computational complexity and additional 

signaling overhead. Nevertheless, both proposed schemes show higher performance 

comparing to the conventional and competitive proposals. Performance of adaptive 

techniques could be improved, in the future, by sensing capabilities of the femtocells. It 

means, the maximum level of signal should be determined exactly according to the 

measurement of the signal level directly by the femtocells. Future enhancement of ETG 

can be achieved by advanced estimation of the signal evolution or interference. 

Moreover, more precise estimation of time spend in the cell by each user based on 

personnel characteristics and behavior of each user could further enhance performance 

of ETG. 

Further, the performance of FCS and hard handover if the small cells are deployed 

in the networks is investigated. Analogically to the macrocells, FCS introduces 

significant gain in throughput for all UEs if small cell backhaul is of unlimited capacity, 

i.e., for the pico/microcells. However, the throughput is improved by FCS only for the 

outdoor UEs offering low throughput if the femtocell backhaul capacity is limited. 

Otherwise, the throughput is even degraded by FCS. Hence, the algorithm related to 
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FCS active set management considering backhaul limitations introduced by deployment 

of FAPs in networks is designed. The proposed algorithm is based on comparison of the 

amount of MBS's radio resources consumed if a cell is included to the UE's active set or 

not. The simulation results show significant gain in throughput for indoor as well as 

outdoor users. Moreover, the proposed algorithm reduces signaling overhead related to 

the active set management and the time when users are not fully satisfied with 

experienced capacity and delay. The proposed algorithm can be further extended for 

FAP's downlink power control to reduce interference from cells that cannot fulfill UE's 

requirements. 

Last part tackles the problem of temporary access of visiting UEs to the closed 

FAPs. The proposed solution is convenient for frequent update and easy management of 

the CSG list. To enable new management procedure, several new control messages are 

proposed. Moreover, the chart flow of control messages for IB and OOB way of the V-

UE access management are designed as well. OOB approach requires enabled 

additional communication technology (e.g. Bluetooth) on both involved devices. 

However, it reduces signaling overhead in communication band.  

Beside further incremental enhancement of individual algorithms and techniques 

to improve their performance, the mobility management can adopt prediction 

approaches considering a periodicity in users' behavior. It means, to exploit the fact that 

users usually follows similar patterns in daily movement and daily traffic. 

Also a problem of merging mobile communications with other technologies such 

as cloud computing should be considered in future research. In this case, user's 

movement could significantly influence computation or transmission of large amount of 

data between the cloud and the user. In this case, management of routing of user's data 

and data processing should be aware of the user's requirements on computational and 

storage capacities of remote clouds. To that end, distribution of a centralized cloud 

closer to the users (e.g. to small cells) can significantly improve user's experienced QoS. 
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SUMMARY OF RESEARCH CONTRIBUTIONS 

The habilitation thesis is focused on the support of user's mobility in networks 

with small cells. The contributions of the thesis into the area of handovers are 

following:  

Chapter 5 

� Proposal and evaluation of the adaptive techniques for minimizing negative 

impact of handover on the user's throughput and improving efficiency in 

elimination of redundant handovers. 

- Related results are includes in following papers: 

1. Z. Becvar - P. Mach, "Adaptive Hysteresis Margin for Handover in 

Femtocell Networks," International Conference on Wireless and 

Mobile Communications (ICWMC 2010), Valencia, Spain, 2010. 

2. Z. Becvar - P. Mach, "Adaptive Techniques for Elimination of 

Redundant Handovers in Femtocells," International Conference on 

Networks (ICN 2011), St. Maarten, Netherlands, 2011. 

3. Z. Becvar - P. Mach - M. Vondra, "Handover Procedure in 

Femtocells," In Femtocell Communications and Technologies. IGI 

Global, 2012, pp. 157-179, edited by R.A. Saeed, B.S. Chaudhari, 

R.A. Mokhtar.   

� Proposal and evaluation of the algorithm for handover decision exploiting 

estimation of user's gain in throughput for minimizing negative impact of 

handover on the user's throughput and improving efficiency in elimination of 

redundant handovers 

- Related results are includes in following papers: 

4. Z. Becvar - P. Mach, "On Enhancement of Handover Decision in 

Femtocells," 4th IFIP Wireless Days, Niagara Falls, Canada, 2011. 

5. Z. Becvar - P. Mach, "Estimation of Throughput Gain for 

Handover Decision in Femtocells," submitted to journal Mobile 

Information Systems in May  2012. 
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Chapter 6 

� Evaluation of the performance of the FCS in networks with small cells for 

various types of users.  

- Related results are includes in following papers: 

6. Z. Becvar - P. Mach, "On Enhancement of Handover Decision in 

Femtocells," submitted to 5th IFIP Wireless Days, Dublin, Ireland, 

2012. 

� Proposal on active set management considering amount of MBS's resources 

consumption if femtocells are deployed and included in active sets. 

- Related results are includes in following papers: 

7. Z. Becvar - P. Roux - P. Mach, "Fast Cell Selection with Efficient 

Active Set Management in OFDMA Networks with Femtocells," 

accepted for publication in EURASIP Journal on Wireless 

Communications and Networking, 2012. 

Chapter 7 

� Design of the control procedure for temporary admission of visiting users to 

closed femtocells to improve users signal quality. 

- Related results are includes in following papers: 

8. Z. Becvar - P. Mach, " Management Procedure for Temporary 

Access of Visiting Users to Closed Femtocells," submitted to 

journal KSII Transactions on Internet and Information Systems in 

September 2012. 

 

As this thesis have been completed in frame of FP7 FREEDOM project, all results 

are also included in deliverables D4.1 - "Advanced procedures for handover in 

femtocells" and D4.2 - "Design and evaluation of effective procedures for MAC layer" 

of the project. Both documents are available at www.ict-freedom.eu. 
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APPENDIX  

VARIATION OF TIME IN FEMTOCELL 

The determination of limits for error in estimation of tc is as follows. The distance 

covered by j-th user in the femtocell is j,davg,fj,f dd ∆±= ; where avg,fd corresponds to 

average distance covered by all users in the FAP's area and j,d∆  represents distance 

deviation of j-th user's. Further, the speed of j-th user is j,vavg,jj vv ∆±= ; where avg,jv  is 

the average speed of pedestrians and j,v∆  stands for the speed variation. Since only 

pedestrians are considered and since the mean speed of users is normally distributed 

along 1ms34.1 − with 1
max,j,v ms37.0 −±=∆ , i.e., 1

j ms37.034.1v −±=  according to [53]. 

In compliance with above mentioned, average tc is defined as: 

avg,javg,favg,j,c v/dt = . In relation to environment in femtocell, the lower and upper limit 

for tc can be defined. The simplest case of infrastructure deployment is represented by a 

single direct street as depicted in Figure 53. 

 

 
Figure 53. Notation for determination of tc limits. 

The real tc of individual user moving along direct street as depicted in Figure 53 is 

limited from lower boundary to:  

( ) ( ) ( ) 71.1/dv/dt j,davg,fmax,j,vavg,jj,davg,fmin,c ∆∆∆ −=+−=  (40) 

The tc,min depends on the position of a street in relation to the FAP radius. The 

street is of a width w∆  and its borders are in distances D2 and D1 from the cell edge. 
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Assuming the direct movement of users along the street, then tc,min is related to D2. The 

distance df,2 covered by a user in the femtocell along the path distanced D2 from the cell 

edge, is equal to ( )2

2f
2
f2,f Drr2d −−= . Therefore the tc,min as a function of D2 is: 

( ) ( ) 71.1/Drr2v/dt
2

2f

2

fmax,j,vavg,j2,fmin,c −−=+= ∆  (41) 

The upper bound for tc is derived analogically to (40) assuming 

97.0/r2d f1,f = (see Figure 53): 

( ) ( ) ( ) 97.0/r297.0/dv/dt fj,davg,fmax,j,vavg,jj,davg,fmax,c =+=−+= ∆∆∆  (42) 

Dependence of tc,min and tc,max over D2 is shown in Figure 54. This figure is 

depicted for condition f1 rD = , which corresponds to the maximum df,1 ( f1,f r2d = ) and 

thus to the worst case scenario. As Figure 54 shows, the variation of tc is up to roughly 

2.1 multiple of the cell radius. This maximum variation occurs if the area of user’s 

movement (a street or a sidewalk) covers at least a half of the cell radius ( fw r=∆ ). 

However, the variation of tc is still significantly lower than in the case of the MBS since 

f
femto
max,cB

mcro
max,c r1.2t;r1.2t ×=×=  and rB>>rf. Thus we can declare femto

max,c
macro

max,c tt >> . 

 
Figure 54. Deviation of tc,min and tc,max over relative distance of users’ path from the 

FAP’s position. 

In more complex situation, the users are not limited to the direct movement. Their 

movement is influenced by other factors such as a deployment of streets in the cell, 

position of points of interests, users’ behavior, etc. All these factors can be represented 

by function ξ . Further, the time in cell is affected by a probability TC that the user will 
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stay longer in the cell, e.g., due to turn away from a direct movement or due to stop. 

Therefore, TC is related to the ξ . Neither ξ  nor TC can be easily determined. However, 

both are clearly proportional to the cell radius as larger cell can cover more complex 

infrastructure lay-out (e.g., more street crosses, more points of interests, etc.). 

Therefore, the probability TC is significantly higher for larger cells: 

)r(f);(fTC)r(f);(fTC frBr fB
==>>== ξξξξ  (43) 

Above mentioned shows that the dispersion of minimum and maximum time in 

cell is significantly lower for cells with low radius. 

 


