Subject description - AD4B33DS

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
AD4B33DS Database Systems
Roles:PO, V Extent of teaching:14KP+6KC
Department:13136 Language of teaching:CS
Guarantors:  Completion:Z,ZK
Lecturers:  Credits:6
Tutors:  Semester:L


Database Systems and their architecture, query languages, transactions, object-relational mapping

Study targets:

The course is aimed at providing students with the basic course of database system design. After the completion of the course, the student is able to create conceptual and logical models, he is able to actively use SQl query language. Further on, he is able to design database applications in Java using JDBC and JPA APIs.

Course outlines:

1. Basic information system architectures (client-server, multi-tier, thin client), analysis of information flows, UML use-case diagrams
2. Basic data modeling, E-R diagrams, relational model, database access API, JDBC
3. Integrity constraints, referential integrity, normal forms
4. Querying in relational databases, SQL basics, referential integrity in SQL
5. Advanced queries, aggregation functions, nested queries
6. Cursor, view, stored procedures, triggers
7. Transactions, their serializability, locking, isolation levels, transaction deadlock, its prevention and resolution
8. UML class diagrams, sequence diagrams
9. Object-relational mapping, object persistence and access API (JPA)
10. Design of multithreaded applications and guidelines for their implementation, UML activity diagrams
11. Basic design patterns
12. Overview of component architectures (CORBA, COM, EJB) and communication protocols (RPC, RMI, IIORB, JMS, http, web services)
13. Design of a distributed system with component architecture, web-based interface
14. Enterprise applications and major design problems (load balancing, data replication)

Exercises outline:

1. Organization of labs, safety rules, making up working groups
2. Basics of relational modeling
3. Conceptual model creation
4. Application interface of a database, connection methods
5. Logical data model creation
6. Interactive query composition
7. Practical examples of transactional processing significance
8. Realization of selected data model in the relational database environment
9. Object-relational mapping
10. Autonomous work
11. Autonomous work
12. Autonomous work
13. Submission and presentation of the working group results
14. Submission and presentation of the working group results, credits


[1] Pokorný, J., Halaška, I.: Databázové systémy. Praha, ČVUT, 1998
[2] Beneš, J.: Manažerské informační systémy. Automatizace, 2000
[3] Mařík, V. a kol.: Umělá inteligence IV. Praha, Academia, 2001
[4] Kroha, P.: Objects and Databases. McGraw-Hill Book Company, London, 1993


The web page of the course is The requirements for successful completion of the course are published on that page.


Conceptual and logical data model, transactions, transaction isolation levels, normal forms, query language, SQL, JPA, high availability, geographical information systems, GIS, data warehouses

Subject is included into these academic programs:

Program Branch Role Recommended semester
BKOI2 Computer and Information Science PO 4
BKEEM1 Applied Electrical Engineering V 4
BKEEM_BO Common courses V 4
BKEEM2 Electrical Engineering and Management V 4
BKOI3 Software Systems PO 4
BKKYR1 Robotics V 4
BKKYR_BO Common courses V 4
BKKYR3 Systems and Control V 4
BKKYR2 Sensors and Instrumentation V 4
BKKME1 Communication Technology V 4
BKKME_BO Common courses V 4
BKKME4 Network and Information Technology V 4
BKKME3 Applied Electronics V 4
BKKME2 Multimedia Technology V 4
BIS(ECTS)-D Intelligent Systems V 4
BKSTMWM Web and Multimedia V 4
BKSTMSI Software Engineering V 4
BKSTMMI Manager Informatics V 4
BKSTMIS Intelligent Systems V 4
BKSTM_BO Common courses V 4
BSI(ECTS)-D Software Engineering V 4
BWM(ECTS)-D Web and Multimedia V 4
BMI(ECTS)-D Manager Informatics V 4

Page updated 3.7.2020 17:51:56, semester: Z,L/2020-1, L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)