Subject description - A1M14VE2

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A1M14VE2 Power Electronics 2
Roles:P, V Extent of teaching:2+2L
Department:13114 Language of teaching:CS
Guarantors:  Completion:Z,ZK
Lecturers:  Credits:5
Tutors:  Semester:Z


Rectifiers with active load, discontinuous and continuous current, multiple commutation, three-phase AC/AC converters, electrostatic separators, welding rectifiers, battery chargers, superconductive magnetic energy reservoir, induction heating, reactive power compensation, contactless switches, softstarters, resistor pulse control, cathodic prevention, power transistor in switching mode, snubbers, structure and control principles of modern controlled drive, pulse width modulation methods, principles of vector control and direct control, pulse width modulated rectifiers, matrix converters, converter protection against current overload and against overvoltage

Course outlines:

1. Rectifiers with active load, discontinuous and continuous current mode
2. Three-phase bridge rectifier working at multiple commutation
3. Three-phase AC/AC converters, diagram of work at resistive load and at inductive load, backward influence
on the feeding network
4. Utilization of power semiconductor converters in non-drive applications, electrostatic separators, welding rectifiers,
battery chargers, superconductive magnetic energy reservoir, induction heating
5. Reactive power compensation, contactless switches for phase control and cycled control, softstarters
6. Resistor pulse control, cathodic and other types of prevention against electrochemical corrosion
7. Power transistor in switching mode, switch on and switch off processes, influence of the load type, limit values,
permissible operation area
8. Loss and lossless snubbers for switching off and snubber for switching on, realisation of the three-phase bridge
transistor voltage source inverter
9. Modern controlled drive, its components, function structure, control principles, pulse width modulation methods
10. Principle of vector control, basic structures, transformation of asynchronous machine equations to various
coordinate systems and used mathematical models
11. Principle of direct torque control, basic structures
12. Principle of pulse width modulated rectifiers, rectifiers with pulse width modulation of current type and with pulse
width modulation of voltage type
13. Control and design principles of matrix converters
14. Power semiconductor converter protection against current overload and against external and commutation

Exercises outline:

1. Instructions to the labs, security directions, laboratory rules, laboratory identification, work with oscilloscope
2. One-phase controlled bridge rectifier with serial R+L load and parallel R+C load
3. Control of one-phase controlled bridge rectifier with variable resistive load to the constant current
4. Influence of the input leakage inductance on the commutation time of the three-phase bridge rectifier
5. Serial resonance bridge inverter
6. Parallel resonance bridge inverter
7. Compensation circuit with rectifier
8. Compensation circuit with AC/AC converter
9. Load current control by the AC/AC converter in transformer secondary circuit at resistive load
10. Load current control by the AC/AC converter in transformer secondary circuit at inductive load
12. Control of the system with indirect frequency converter including pulse width modulated voltage source inverter
11. Control of the system with pulse width modulated rectifier
13. Load current control by the AC/AC converter in transformer primary circuit at resistive load
14. Assesment


1. Ned Mohan, William P. Robbins, Tore M. Undeland: WIE Power Electronics: Converters, Applications and Design, Media Enhanced , 3rd Edition, John Wiley & Sons, Inc., New York, March 2003
2. Bimal K. Bose:Power Electronics and Variable Frequency Drives : Technology and Applications John Wiley & Sons, Inc. -IEEE Press, New York, September 1996
3. PRESSMAN, Abraham I., Keith H. BILLINGS a Taylor MOREY. Switching power supply design. 3rd ed. New York: McGraw - Hill, 2009. ISBN 978-0-07-148272-1.


Credit conditions: Attendance by the study laws, activity by the exercise solution, right worked and checked measurement transactions. Defense of the semestral project


Subject is included into these academic programs:

Program Branch Role Recommended semester
MPIB Common courses V
MPKME1 Wireless Communication V 3
MPKME5 Systems of Communication V 3
MPKME4 Networks of Electronic Communication V 3
MPKME3 Electronics V 3
MPKME2 Multimedia Technology V 3
MPEEM1 Technological Systems P 3
MPEEM3 Electrical Power Engineering P 3
MPEEM2 Electrical Machines, Apparatus and Drives P 3
MPKYR4 Aerospace Systems V 3
MPKYR1 Robotics V 3
MPKYR3 Systems and Control V 3
MPKYR2 Sensors and Instrumentation V 3

Page updated 10.8.2020 12:51:48, semester: Z,L/2020-1, L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)