Subject description - A4M33PAH

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A4M33PAH Planning and game playing Extent of teaching:2P+2C
Guarantors:  Roles:  Language of
teaching:
CS
Teachers:  Completion:Z,ZK
Responsible Department:13136 Credits:6 Semester:L

Anotation:

This course provides an introduction to classical AI planning (linear, nonliner planning, graph-plan planning, heuristic planning, SAT-based planning) and game-tree representation and methods of adversarial search (such as minimax and alpha/beta pruning).

Course outlines:

1. planning problem representation and planning problem komplexity
2. linear planning, TOPLAN algorithm,
3. nonlineární planning, causal links thread resolution
4. Graf-oriented planning
5. planning by means of SAT
6. Introduction to game playing
7. Minimax, alfa-beta prunning
8. Advenced methods of adversarial planning
9. Hierarchical HTN planning
10. Heuristic planning
11. Contingency planning, temporal planning
12. Planning a probability
13. Planning in game playing

Exercises outline:

1. Planning problems
2. Semestral project specification: design and development of a general planner
3.-5.  Laboratories
6. Game playing algorithms
7. Semestral project specification: design and development of a game playing algorithm
8.-12.  Laboratories
13. Competition

Literature:

Nau, D., Ghallab, M., and Traverso, P. 2004 Automated Planning: Theory and Practice. Morgan Kaufmann Publishers Inc. Russell, S. J. and Norvig, P. 2003 Artificial Intelligence: a Modern Approach. 2. Pearson Education.

Requirements:

Subject is included into these academic programs:

Program Branch Role Recommended semester


Page updated 9.12.2019 17:52:19, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)