Subject description - AE3M33PRO

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
AE3M33PRO Advanced robotics Extent of teaching:2P+2L
Guarantors:  Roles:PO,V Language of
teaching:
EN
Teachers:  Completion:Z,ZK
Responsible Department:13133 Credits:6 Semester:Z

Anotation:

We will explain and demonstrate techniques for modelling, analyzing and identifying robot kinematics. We will explain more advanced principles of the representation of motion in space and the robot descriptions suitable for identification of kinematic parameters from measured data. We will explain how to solve the inverse kinematic task of 6DOF serial manipulators and how it can be used to identify its kinematic parameters. Theory will be demonstrated on simulated tasks and verified on a real industrial robot.

Study targets:

The goal is do present more advanced methods of analysis and modeling of robot kinematics.

Course outlines:

1. Industrial manipulator, its kinematics and state space.
2. Redundant and parallel manipulators.
3. Space motion, its representation and parameterization, axis of motion, rotation matrix, infinitesimal rotation, Euler angles, quaternions, interpolation of spatial motion.
4. Modified Denavit-Hartenberg notation.
5. Algebraic techniques for kinematical analysis.
6. Solving algebraic equations.
7. Singular poses of manipulators and their determination.
8. Inverse kinematics of a general 6DOF serial manipulator.
9. Algebraic formulation of the inverse kinematical task.
10. Solving the inverse kinematics.
11. Identification of kinematical parameters of real manipulators.
12. Algebraic formulation of the kinematical parameters identification.
13. Solving the identification task.
14. Summary.

Exercises outline:

1. Introduction to laboratory, Maple, a-test.
2. Correcting a-test, Maple.
3. Spatial rotations, representations, axis of motion.
4. Modified Denavit-Hartenberg notation.
5. Kinematics of redundant manipulator.
6. Solving algebraic equations.
7. Singular poses of a manipulator and their determination.
8. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
9. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
10. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
11. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
12. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
13. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
14. Presentation of solutions.

Literature:

H. Asada, J.-J. E. Slotine. Robot Analysis and Control. Wiley-Interscience, 1986.
P. Pták. Introduction to Linear Algebra. Vydavatelství ČVUT, Praha, 2007.
A. Karger, M. Kargerová: Základy robotiky a prostorové kinematiky, Vydavatelství ČVUT,
Praha, 2000

Requirements:

A course of basic robotics, e.g. A3B33ROB.

Webpage:

http://cw.felk.cvut.cz/doku.php/courses/a3m33pro/start

Keywords:

robotics, kinematics, trajectory, identification, modelling

Subject is included into these academic programs:

Program Branch Role Recommended semester
MEKME1 Wireless Communication V 3
MEKME5 Systems of Communication V 3
MEKME4 Networks of Electronic Communication V 3
MEKME3 Electronics V 3
MEKME2 Multimedia Technology V 3
MEOI1 Artificial Intelligence V 3
MEOI5NEW Software Engineering V 3
MEOI5 Software Engineering V 3
MEOI4 Computer Graphics and Interaction V 3
MEOI3 Computer Vision and Image Processing V 3
MEOI2 Computer Engineering V 3
MEEEM1 Technological Systems V 3
MEEEM5 Economy and Management of Electrical Engineering V 3
MEEEM4 Economy and Management of Power Engineering V 3
MEEEM3 Electrical Power Engineering V 3
MEEEM2 Electrical Machines, Apparatus and Drives V 3
MEKYR1 Robotics PO 3


Page updated 6.12.2019 17:52:32, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)