Subject description - QB-EPV

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
QB-EPV Semiconductor Electronics
Roles:  Extent of teaching:2P+2C
Department:13134 Language of teaching:CS
Guarantors:  Completion:Z,ZK
Lecturers:  Credits:4
Tutors:  Semester:L

Anotation:

Electronic properties of semiconductors determined by their crystal structure. Transport and statistics of electrons and holes in equilibrium and non-equilibrium. Properties of basic semiconductor structures (PN junction, heterojunction based on band structure analysis. Systematic derivation of semiconductor devices characteristics (diode, BJT, MOSFET, JFET, laser) with special emphasis on non-ideal effects and extracted circuit models. Essential trends of progress

Course outlines:

1. Crystal structure of semiconductors, crystal defects,
phonons.
2. Semiconductor band structure, electron and hole
effective mass, density of states.
3. Semiconductor in thermodynamic equilibrium, Fermi level.
4. Carrier transport in semiconductors, electron and hole
mobility.
5. Electrons and holes in nonequilibrium. Generation and
recombination.
6. PN junction, heterojunctions - two dimensional electron
gas, superlattices.
7. Semiconductor diodes, breakdown mechanisms, resonant
tunnelling.
8. Bipolar junction transistor, calculation of current
amplification, HBT, nonideal effects.
9. Metal - semiconductor junction, modulation doping, JFET,
MESFET, HEMT.
10. MOS, ideal and real structure, dielectrics, MOS
structure capacitance.
11. MOSFET, nonideal effects, short a narrow channel
effects, CCD.
12. Interaction of radiation with semiconductor, optical
absorption, photoluminescence.
13. Electroluminescence. Semiconductor lasers.
14. Quantum dots, single electron transport.

Exercises outline:

1. Basics of quantum mechanics - repetition.
2. Electron in the periodic potential, Kroning-Penney model
3. Fermi-Dirac and Bose-Einstein statistics - derivation.
4. Boltzmann transport equation, HD, DD models - derivation
5. Simulation by Monte Carlo method - demonstration.
6. Semiconductor processing - excursion.
7. Electron in the quantum well, tunnelling - Schrodinger
equation application.
8. Model levels of semiconductor devices.
9. Showing of physical effects in semiconductors by
computer 2D simulation.
10. Measurement of transport properties - HEMT channel
mobility.
11. Measurement on the unipolar structure - CV
characteristics.
12. Measurement on the semiconductor laser - spectral
characteristics.
13. Final written test
14. Final grading

Literature:

1. D. A. Naemen: Semiconductor Physics and Devices: Basic
Principles, R. D. Irwin 1992
2. M. J. Kelly: Low-Dimensional Semiconductors, Oxford
Press 1995
3. U. Cilingiroglu: Systematic Analysis of Bipolar and MOS
Transistors, Artech House 1993

Requirements:

Presence in labs and seminars, successful final test.

Subject is included into these academic programs:

Program Branch Role Recommended semester


Page updated 25.4.2024 17:51:17, semester: Z/2024-5, Z,L/2023-4, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)