Subject description - A8B01MCT

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A8B01MCT Mathematics-Complex Variable and Integral Transforms
Roles:P Extent of teaching:4P+2S
Department:13101 Language of teaching:CS
Guarantors:Hamhalter J. Completion:Z,ZK
Lecturers:Hamhalter J. Credits:7
Tutors:Hamhalter J., Křepela M., Sobotíková V. Semester:Z

Anotation:

Cílem předmětu je vyložit základní principy analýzy v komplexním oboru a integrálních transformací. Komplexní analýza je dovedena do reziduové věty a jejích aplikací. S využitím tohoto aparátu jsou dále vybudovány základy Fourierovy, Laplaceovy a Z-transformace. Pozornost je věnována i aplikacím zejména pro řešení diferenciálních a diferenčních rovnic.

Course outlines:

1. Komplexní rovina. Základní pojmy komplexní analýzy
2. Diferencovatelnost funkcí. Cauchy-Riemannovy podmínky, holomorfnost.
3. Elementární funkce (Mobiova transformace , exponenciální funkce, logaritmus, goniometrické funkce).
4. Křivkový integrál, Cauchyova věta a Cauchyův integrální vzorec.
5. Mocninné řady. Rozvoj holomorfní funkce v Taylorovu řadu.
6. Laurentovy řady. Rozvoj holomorfní funkce funkce v Laurentovu řadu.
7. Singularity. Reziduum a jeho výpočet.
8. Reziduová věta a její aplikace
9. Fourierova transformace.
10. Laplaceova transformace - základní gramatika.
11. Inverzní Laplaceova transformace. Riemann-Mellinův vzorec. Metoda reziduí.
12. Transformace Z. Inverzní transformace Z.
13. Řešení diferenčních rovnic pomocí transformace Z.
14. Rezerva.

Exercises outline:

Stejná jako osnova přednášek.

Literature:

1. J. Hamhalter, J.Tišer: Funkce komplexní proměnné, Skripta FEL ČVUT, 2017.
2. H. A. Priestly: Introduction to Complex Analysis, Oxford University Press, 2003.
3. A. D. Wunsch: Complex variables with Applications, Third Edition, Pearson 2005.
4. L. Debnath: Integral Transforms and their Applications, CRC Press, Inc., 1995
5. J. L. Schiff: The Laplace transform, Theory and Applications. Springer Verlag, 1996.
6. J. Veit: Integrální transformace, XIV, SNTL, Praha 1979.
Elektronické materiály:
1. M. Bohata, J. Hamhalter: Integrální transformace: http://math.feld.cvut.cz/bohata/kan/transformace.pdf
2. M. Bohata, J. Hamhalter: Sbírka úloh z komplexní analýyzy a integrálních transformací: http://math.feld.cvut.cz/bohata/kan/sbirka.pdf

Requirements:

Informace viz http://math.feld.cvut.cz/0educ/pozad/b3b01kat.htm

Webpage:

web předmětu: http://math.feld.cvut.cz/veronika/vyuka/b3b01kat.htm

Subject is included into these academic programs:

Program Branch Role Recommended semester
BPOES_2020 Common courses P 3
BPOES Common courses P 3


Page updated 2.7.2020 11:52:18, semester: Z,L/2020-1, L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)