Subject description - BE3M33PRO

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
BE3M33PRO Advanced Robotics
Roles:PO, PV Extent of teaching:2P+2C
Department:13133 Language of teaching:EN
Guarantors:Pajdla T. Completion:Z,ZK
Lecturers:Kúkelová Z., Pajdla T. Credits:6
Tutors:Pajdla T., Polic M., Steidl S. Semester:Z

Anotation:

We will explain and demonstrate techniques for modelling, analyzing and identifying robot kinematics. We will explain more advanced principles of the representation of motion in space and the robot descriptions suitable for identification of kinematic parameters from measured data. We will explain how to solve the inverse kinematic task of 6DOF serial manipulators and how it can be used to identify its kinematic parameters. Theory will be demonstrated on simulated tasks and verified on a real industrial robot.

Study targets:

The goal is do present more advanced methods of analysis and modeling of robot kinematics.

Course outlines:

1. Introduction, algebraic equations and eigenvalues
2. Motion: Motion as a transformation of coordinates
3. Kinematics: Denavit-Hartenberg convention for a manipulator
4. Solving algebraic equations
5. Motion axis and the rotation matrix
6. Inverse kinematic task of a general 6R serial manipulator I 7. Inverse kinematic task of a general 6R serial manipulator II
8. Rotation reprezentation and parameterization
9. Angle-axis parameterization
10. Quaternions
11. Manipulator calibration
12. Summary and review.

Exercises outline:

1. Introduction to laboratory, Maple, a-test.
2. Correcting a-test, Maple.
3. Spatial rotations, representations, axis of motion.
4. Modified Denavit-Hartenberg notation.
5. Kinematics of redundant manipulator.
6. Solving algebraic equations.
7. Singular poses of a manipulator and their determination.
8. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
9. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
10. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
11. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
12. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
13. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
14. Presentation of solutions.

Literature:

Reza N. Jazar: Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer, second edition, 2010. A text book covering the geometry and kinematics of manipulators. Available in th e library of the CTU in Prague.
M. Meloun, T. Pajdla. Inverse Kinematics for a General 6R Manipulator. CTU-CMP?2013-29. 2013.
Algebraic-numeric solution to Inverse kinematic task of a 6R manipulator. ftp://cmp.felk.cvut.cz/pub/cmp/articles/meloun/Meloun-TR-2013-29.pdf
T. Pajdla. Elements of Geometry for Robotics. 2014.
Geometry and representation of motion. Available in PDF: cmp.felk.cvut.cz/cmp/courses/PRO/2014/Lecture/PRO-2014-Lecture.pdf

Requirements:

A course of basic robotics, e.g. A3B33ROB.

Webpage:

http://cw.fel.cvut.cz/wiki/courses/pro

Keywords:

robotics, kinematics, trajectory, identification, modelling

Subject is included into these academic programs:

Program Branch Role Recommended semester
MEKYR5_2016 Cybernetics and Robotics PV 3
MEKYR2_2016 Sensors and Instrumentation PV 3
MEKYR1_2016 Robotics PO 3
MEKYR4_2016 Aerospace Systems PV 3
MEKYR3_2016 Systems and Control PV 3


Page updated 6.8.2020 11:51:49, semester: Z,L/2020-1, L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)