Subject description - BV002ASF

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
BV002ASF Astrophysics
Roles:  Extent of teaching:2P+2C
Department:13102 Language of teaching:CS
Guarantors:Červenka M. Completion:KZ
Lecturers:Červenka M., Kulhánek P. Credits:4
Tutors:Červenka M., Kulhánek P. Semester:L

Anotation:

The lecture "Astrophysics" is a continuation of the basic physics courses. In this relatively captivating area of physics, students will review and deepen their understanding of significant aspects of physics, such as mechanics, optics, the theory of relativity, quantum theory, radiation, and more.

Content:

Basic concepts and physical relationships: astronomical unit, light-year, parsec, parallax, black body radiation, relative and absolute magnitude, Hertzsprung-Russell diagram. Motion of bodies in a central gravitational field - Kepler's problem, conic sections in polar coordinates, escape velocities, interplanetary flights. Standard model of particle physics: elementary particles and interactions. Fundamentals of stellar physics: hydrostatic equilibrium of stars, thermonuclear reactions, energy transfer in stars. Formation and evolution of stars, Jeans criterion, white dwarfs, neutron stars, close binary stars. Special theory of relativity: relativistic Doppler effect, spacetime interval, Minkowski metric and its applications, interstellar travel. Basic ideas of general theory of relativity, local inertial reference frame. Schwarzschild metric, gravitational Doppler effect, curvature of spacetime in a gravitational field, GPS satellite clocks. Black holes, falling into a black hole. Motion of particles and photons near a black hole. Introduction to cosmology: Olbers' paradox, Hubble's law, cosmological principle, Friedman's equation, Friedman's models of the universe, cosmological constant. Metric on the surface of a sphere, spacetime in a homogeneous and isotropic universe - Robertson-Walker metric. Cosmological redshift, volume of the universe, particle horizon, inflation.

Course outlines:

1. Expressing distances in space: astronomical unit, Titius-Bode formula, light-year, parsec, parallax.
2. Blackbody radiation (Planck's law, Stefan-Boltzmann law, Wien's law), stellar radiation; relative and absolute magnitude, Hertzsprung-Russell diagram.
3. Motion in a central gravitational field - Kepler's problem.
4. Elementary particles and interactions (introduction).
5. Basics of stellar physics: hydrostatic equilibrium of stars, thermonuclear reactions, energy transfer in stars, Vogt-Russell theorem.
6. Star formation - Jeans criterion, gravitational collapse, movement on the Hertzsprung-Russell diagram.
7. Final evolutionary stages of stars: white dwarfs, neutron stars (pulsars), black holes.
8. Special theory of relativity: events, Lorentz transformation, spacetime interval, world line, proper time.
9. Basic ideas of general theory of relativity, equivalence principle, local inertial frame, light in a gravitational field, geodesics, Schwarzschild metric.
10. Applications of the Schwarzschild metric: spacetime deformation in a gravitational field, time dilation in a gravitational field.
11. Motion in a gravitational field from the perspective of general theory of relativity: Euler's equation, circular orbit.
12. Introduction to cosmology: Olbers' paradox, cosmological principle, Hubble-Lemaitre law, cosmological redshift, Friedman's equation.
13. Geometry of the universe, FRW metric.
14. Propagation of light in an expanding universe, cosmological redshift, volume of the universe, particle horizon, inflation.

Exercises outline:

1. Orientation in the sky: horizon and equatorial coordinates, sidereal time.
2. Gravity inside a sphere, applications: tunneling through the Earth, virial theorem.
3. Motion in a central gravitational field (examples), space velocities, travel within the solar system.
4. Particles and interactions - quark composition of composite particles, Feynman diagrams.
5. Particle collisions - examples.
6. Basics of stellar physics - examples.
7. Fundamental concepts of special theory of relativity - example: photon clocks, time dilation, length contraction.
8. Minkowski metric, applications of special theory of relativity - Doppler effect for light.
9. Applications of special theory of relativity - journey to the center of the Galaxy (interstellar travel).
10. Applications of general theory of relativity - gravitational Doppler effect, clocks on telecommunication satellites (GPS system).
11. Motion in a gravitational field from the perspective of general theory of relativity - examples: falling into a black hole, last stable orbit around a black hole, circular light orbit around a black hole.
12. Models of the universe expansion - examples of solutions to Friedman's equation.
13. Cosmology - examples.
14. Credit test.

Literature:

1. Bradley W. Carroll, Dale A. Ostlie , An Introduction to Modern Astrophysics, Cambridge University Press; 2nd edition, 2017
2. Andrew Liddle, An Introduction to Modern Cosmology, Wiley; 3rd edition, 2015
3. James Hartle, Gravity: An Introduction to Einstein's General Relativity, Pearson Education Limited, 2013
4. Edwin F. Taylor, John Archibald Wheeler, Exploring Black Holes: Introduction to General Relativity 1st Edition, Addison Wesley Longman; 1st edition, 2000
5. David Griffiths, Introduction to Elementary Particles, Wiley-VCH; 2nd edition, 2008, (chapters 1 and 2).

Requirements:

Attendance at exercises and achieving a minimum of 50% success in the credit test.

Keywords:

astrophysics, cosmology, theory of relativity, quantum theory

Subject is included into these academic programs:

Program Branch Role Recommended semester


Page updated 19.4.2024 17:54:04, semester: Z,L/2023-4, Z/2024-5, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)