13136 / 13141 - Publications - 2019

13136 / 13141 - Artificial Intelligence Center

Publications 2019

Papers in WoS Journals

HORÁK, K., et al. Optimizing Honeypot Strategies Against Dynamic Lateral Movement Using Partially Observable Stochastic Games. Computers & Security. 2019, 87 ISSN 0167-4048. DOI 10.1016/j.cose.2019.101579.

PĚNIČKA, R., J. FAIGL, and M. SASKA. Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants. European Journal of Operational Research. 2019, 276(3), 816-825. ISSN 0377-2217. DOI 10.1016/j.ejor.2019.01.047.

ČERTICKÝ, M., et al. Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment. Sensors. 2019, 19(5), ISSN 1424-8220. DOI 10.3390/s19050989. Available from: https://www.mdpi.com/1424-8220/19/5/989

PRESSE, P., et al. Joint Detection of Malicious Domains and Infected Clients. Machine Learning. 2019, 108(8-9), 1353-1368. ISSN 0885-6125. DOI 10.1007/s10994-019-05789-z.

BERANDI, M., et al. A Transversal Method of Lines for the Numerical Modeling of Vertical Infiltration into the Vadose Zone. Applied Numerical Mathematics. 2019, 135 264-275. ISSN 0168-9274. DOI 10.1016/j.apnum.2018.08.013.

DRCHAL, J., M. ČERTICKÝ, and M. JAKOB. Data-driven Activity Scheduler for Agent-based Mobility Models. Transportation Research Part C: Emerging Technologies. 2019, 98 370-390. ISSN 0968-090X. DOI 10.1016/j.trc.2018.12.002.

PĚNIČKA, R., et al. Data Collection Planning with Non-zero Sensing Distance for a Budget and Curvature Constrained Unmanned Aerial Vehicle. Autonomous Robots. 2019, 43(8), 1937-1956. ISSN 0929-5593. DOI 10.1007/s10514-019-09844-5.

KOVAŘÍK, V. Complexities and Representations of F-Borel Spaces. Dissertationes Mathematicae. 2019, 540 1-69. ISSN 0012-3862. DOI 10.4064/dm794-2-2019.

CENAMOR, I., M. VALLATI, and L. CHRPA. On the Predictability of Domain-independent Temporal Planners. Computational Intelligence. 2019, 35(4), 745-773. ISSN 0824-7935. DOI 10.1111/coin.12211.

FAIGL, J. Data collection path planning with spatially correlated measurements using growing self-organizing array. Applied Soft Computing. 2019, 75 130-147. ISSN 1568-4946. DOI 10.1016/j.asoc.2018.11.005.

FAIGL, J. and P. ČÍŽEK. Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only. Robotics and Autonomous Systems. 2019, 116 136-147. ISSN 0921-8890. DOI 10.1016/j.robot.2019.03.008.

EGAN, M., N. OREN, and M. JAKOB. Hybrid Mechanisms for On-Demand Transpor. IEEE Transactions on Intelligent Transportation Systems. 2019, 20(12), 4500-4512. ISSN 1524-9050. DOI 10.1109/TITS.2018.2886579.

ČÍŽEK, P. and J. FAIGL. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot. Bioinspiration & Biomimetics. 2019, 14(4), ISSN 1748-3182. DOI 10.1088/1748-3190/ab1a9c.

CHRPA, L., M. VALLATI, and T.L. MCCLUSKEY. Inner Entanglements: Narrowing the Search in Classical Planning by Problem Reformulation. Computational Intelligence. 2019, 35(2), 395-429. ISSN 0824-7935. DOI 10.1111/coin.12203.

DURKOTA, K., et al. Hardening networks against strategic attackers using attack graph games. Computers & Security. 2019, 87(87), ISSN 0167-4048. DOI 10.1016/j.cose.2019.101578.

SELECKÝ, M., J. FAIGL, and M. ROLLO. Analysis of Using Mixed Reality Simulations for Incremental Development of Multi-UAV Systems. Journal of Intelligent and Robotic Systems. 2019, 95(1), 211-227. ISSN 0921-0296. DOI 10.1007/s10846-018-0875-8.

FAIGL, J., et al. Unsupervised learning‐based flexible framework for surveillance planning with aerial vehicles. Journal of Field Robotics. 2019, 36(1), 270-301. ISSN 1556-4959. DOI 10.1002/rob.21823.

SPURNÝ, V., et al. Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles. Journal of Field Robotics. 2019, 36(1), 125-148. ISSN 1556-4959. DOI 10.1002/rob.21816.

ŠTĚPÁN, P., et al. Vision techniques for on-board detection, following and mapping of moving targets. Journal of Field Robotics. 2019, 36(1), 252-269. ISSN 1556-4959. DOI 10.1002/rob.21850.

Papers in Other Journals

PĚNIČKA, R., J. FAIGL, and M. SASKA. Physical Orienteering Problem for Unmanned Aerial Vehicle Data Collection Planning in Environments with Obstacles. IEEE Robotics and Automation Letters. 2019, 4(3), 3005-3012. ISSN 2377-3766. DOI 10.1109/LRA.2019.2923949. Available from: https://ieeexplore.ieee.org/document/8741059

KRAJNÍK, T., et al. Warped Hypertime Representations for Long-term Autonomy of Mobile Robots. IEEE Robotics and Automation Letters. 2019, 4(4), 3310-3317. ISSN 2377-3766. DOI 10.1109/LRA.2019.2926682. Available from: https://ieeexplore.ieee.org/document/8754723

FAIGL, J., P. VÁŇA, and J. DECKEROVÁ. Fast Heuristics for the 3-D Multi-Goal Path Planning Based on the Generalized Traveling Salesman Problem With Neighborhoods. IEEE Robotics and Automation Letters. 2019, 4(3), 2439-2446. ISSN 2377-3766. DOI 10.1109/LRA.2019.2900507. Available from: https://ieeexplore.ieee.org/document/8645724

Books, Book Chapters and Lecture Notes

ŠTEFAŇÁK, J., et al. Sanace skalních svahů - pasivní kompozitní prvky. In: ŠTEFAŇÁK, J., et al., eds. Sanace skalních svahů - pasivní kompozitní prvky.. Brno: Akademické nakladatelství CERM, 2019. p. 1-127. 1. vol. 1. ISBN 978-80-7623-015-6.

ŠTEFAŇÁK, J., et al., eds. Sanace skalních svahů - pasivní kompozitní prvky.. Brno: Akademické nakladatelství CERM, 2019. 1. vol. 1. ISBN 978-80-7623-015-6.

ROY, A., et al., eds. IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). San Diego, Californie, 2019-09-08/2019-09-12. Irvine, CA: IEEE, 2019. 1. vol. 1. ISSN 2155-7209. ISBN 978-1-7281-0649-6. Available from: https://2019.dasconline.org/

ŠTOLBA, M., et al. A General Approach to Distributed and Privacy-Preserving Heuristic Computation. In: Agent and Artificial Intelligence - 11th International Conference, ICAART 2019. Cham: Springer, 2019. p. 55-71. ISBN 978-3-030-37493-8. DOI 10.1007/978-3-030-37494-5_4.

Conference Proceedings

MAJER, F., et al. Learning to See Through Haze: Radar-based Human Detection for Adverse Weather Conditions. In: Proceedings of European Conference on Mobile Robots. European Conference on Mobile Robots 2019, Prague, 2019-08-04/2019-08-06. Prague: Czech Technical University, 2019. ISBN 978-1-7281-3606-6. DOI 10.1109/ECMR.2019.8870954.

VINTR, T., et al. Spatiotemporal Models of Human Activity for Robotic Patrolling. In: Modelling and Simulation for Autonomous Systems (MESAS 2018). MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Cham: Springer International Publishing AG, 2019. p. 54-64. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_5.

NA, S., et al. Extended Artificial Pheromone System for Swarm Robotic Applications. In: Proceedings of the Artificial Life Conference 2019. The 2019 Conference on Artificial Life, Newcastle, 2019-07-29/2019-08-02. MIT Press, 2019. p. 608-615. ISSN 1064-5462. DOI 10.1162/isal_a_00228.

DALLOLIO, A., et al. 1Long-duration Autonomy for Open OceanExploration: Preliminary Results & Challenges. In: Online Proceedings of Robotics Science and Systems. Robotics: Science and Systems, Freiburg, 2019-06-22/2019-06-26. Freiburg im Breisgau: Albert Ludwig University of Freiburg, 2019. ISBN 978-0-9923747-5-4. Available from: https://robots-wild-rss.github.io/rss2019-workshop/paper/Long-duration%20Autonomy%20for%20Open%20Ocean%20Exploration:%20Preliminary%20Results%20&%20Challenges.pdf

CUCHÝ, M. and M. JAKOB. Electric Vehicle Travel Planning with Lazy Evaluation of Recharging Times. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, 2019-10-06/2019-10-09. Piscataway: IEEE, 2019. p. 3168-3173. 1. vol. 1. ISSN 2577-1655. ISBN 978-1-7281-4569-3. DOI 10.1109/SMC.2019.8913902.

BAYER, J. and J. FAIGL. Localization Fusion for Aerial Vehicles in Partially GNSS Denied Environments. In: Modelling and Simulation for Autonomous Systems. MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Basel: Springer, 2019. p. 251-262. LNCS. vol. 11472. ISSN 0302-9743. ISBN 978-3-030-14983-3.

NGUYENOVÁ, M., P. ČÍŽEK, and J. FAIGL. Modeling Proprioceptive Sensing for Locomotion Control of Hexapod Walking Robot in Robotic Simulator. In: Modelling and Simulation for Autonomous Systems. MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Basel: Springer, 2019. p. 215-225. LNCS. vol. 11472. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_17.

CHRESTIEN, L. and L. CHRPA. Appropriate expressiveness of planning domain models: An urban traffic control case study. In: Proceedings of the 10th International Conference on Knowledge Capture. 10th International Conference on Knowledge Capture, Marina del Rey, 2019-11-19/2019-12-22. New York: ACM, 2019. p. 247-250. ISBN 978-1-4503-7008-0. DOI 10.1145/3360901.3364437. Available from: https://dl.acm.org/doi/10.1145/3360901.3364437

VOLF, P. Comparison of the Flight Centric and Conventional Air Traffic Control. In: Proceedings of 2019 Integrated Communications, Navigation and Surveillance Conference. Integrated Communications, Navigation and Surveillance Conference, Herndon, 2019-04-09/2019-04-11. IEEE Xplore, 2019. ISSN 2155-4943. ISBN 978-1-7281-1893-2. DOI 10.1109/ICNSURV.2019.8735109.

BAYER, J. and J. FAIGL. On autonomous spatial exploration with small hexapod walking robot using tracking camera intel RealSense T265. In: PŘEUČIL, L., S. BEHNKE, and M. KULICH, eds. 2019 European Conference on Mobile Robots (ECMR). European Conference on Mobile Robots 2019, Prague, 2019-08-04/2019-08-06. St. Paul, Minnesota: IEEE, 2019. Proceedings. ISBN 978-1-7281-3605-9. DOI 10.1109/ECMR.2019.8870968. Available from: https://ieeexplore.ieee.org/document/8870968

FIALKA SOBKOVÁ, L., M. ČERTICKÝ, and Š. JIRÁČEK. APPLICATION OF TRANSPORTATION BIG DATA TO SUPPORT DECISION-MAKING FOR ARCHITECTURE TEAMS: PROCESSES AND EXPERIENCES FROM TWO CASE-STUDIES. In: MAMBRETTI, S. and J.L. MIRALLES I GARCIA, eds. WIT Transactions on Ecology and the Environment. Sustainable City 2019 - 13th International Conference on Urban Regeneration and Sustainability, Valencia, 2019-10-01/2019-10-03. Southampton: WIT Press, Ashurst Lodge, 2019. p. 639-651. 238. ISSN 1743-3541. ISBN 978-1-78466-355-1. DOI 10.2495/SC190551.

HORÁK, K., et al. Compact Representation of Value Function in Partially Observable Stochastic Games. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. IJCAI 2019: 28th International Joint Conference on Artificial Intelligence, Macau, 2019-08-10/2019-08-16. International Joint Conferences on Artificial Intelligence Organization, 2019. p. 350-356. ISSN 1045-0823. ISBN 978-0-9992411-4-1. DOI 10.24963/ijcai.2019/50. Available from: https://www.ijcai.org/proceedings/2019/50

MAJER, F., et al. A Versatile Visual Navigation System for Autonomous Vehicles. In: Modelling and Simulation for Autonomous Systems (MESAS 2018). MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Cham: Springer International Publishing AG, 2019. p. 90-110. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_8.

ŠTOLBA, M., D. FIŠER, and A. KOMENDA. Privacy Leakage of Search-Based Multi-Agent Planning Algorithms. In: Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling. The Twenty-Ninth International Conference on Automated Planning and Scheduling, Berkeley, 2019-07-11/2019-07-15. Menlo Park: AAAI Press, 2019. p. 482-490. ISSN 2334-0843. Available from: https://aaai.org/ojs/index.php/ICAPS/article/view/3513

VINTR, T., et al. Spatio-temporal Representation of Time-varying Pedestrian Flows. In: Long-term Human Motion Prediction Workshop ICRA 2019. Montreal, 2019-05-24. Piscataway: IEEE Robotics and Automation Society, 2019.

WANG, X., et al. When Players Affect Target Values: Modeling and Solving Dynamic Partially Observable Security Games. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10th International Conference on Decision and Game Theory for Security, GameSec 2019; Stockholm; Sweden, Stockholm, 2019-10-30/2019-11-01. Wien: Springer, 2019. p. 542-562. vol. 11836. ISSN 0302-9743. ISBN 9783030324292. DOI 10.1007/978-3-030-32430-8_32.

FAIGL, J. and M. PRÁGR. On Unsupervised Learning of Traversal Cost and Terrain Types Identification Using Self-organizing Maps. In: Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. ICANN 2019 - The 28th International Conference on Artificial Neural Networks, Munich, 2019-09-17/2019-09-19. Basel: Springer, 2019. p. 654-668. Lecture Notes in Computer Science. vol. 11727. ISSN 0302-9743. ISBN 978-3-030-30486-7. DOI 10.1007/978-3-030-30487-4_50.

MAREK, J., P. VÁŇA, and J. FAIGL. Trajectory Planning for Aerial Vehicles in the Area Coverage Problem with Nearby Obstacles. In: Modelling and Simulation for Autonomous Systems. MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Basel: Springer, 2019. p. 226-236. LNCS. vol. 11472. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_18.

CATANIA, C., S. GARCÍA, and P. TORRES. Deep Convolutional Neural Networks for DGA Detection. In: Computer Science - CACIS 2018. 24th Argentine Congress on Computer Science, Tandil, 2018-10-08/2018-10-12. Düsseldorf: Springer VDI Verlag, 2019. p. 327-340. ISSN 1865-0929. ISBN 978-3-030-20786-1. DOI 10.1007/978-3-030-20787-8_23.

CUCHÝ, M., M. ŠTOLBA, and M. JAKOB. Integrated Route, Charging and Activity Planning for Whole Day Mobility with Electric Vehicles. In: Agents and Artificial Intelligence (Subseries of Lecture Notes in Computer Science). ICAART 2018: the 10th International Conference on Agents and Artificial Intelligence, Funchal, Madeira, 2018-01-16/2018-12-18. Basel: Springer Nature Switzerland AG, 2019. p. 274-289. 11352. ISSN 0302-9743. ISBN 978-3-030-05452-6. DOI 10.1007/978-3-030-05453-3_13.

CHRPA, L., M. VALLATI, and S. PARKINSON. Exploiting Automated Planning for Efficient Centralized Vehicle Routing and Mitigating Congestion in Urban Road Networks. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. 34th Annual ACM Symposium on Applied Computing, Limassol, 2019-04-08/2019-04-12. New York: ACM, 2019. p. 191-194. ISBN 978-1-4503-5933-7. DOI 10.1145/3297280.3297539.

FAIGL, J., P. VÁŇA, and R. PĚNIČKA. Multi-Vehicle Close Enough Orienteering Problem with Bézier Curves for Multi-Rotor Aerial Vehicles. In: Proceedings of 2019 International Conference on Robotics and Automation. 2019 IEEE International Conference on Robotics and Automation, Montreal, 2019-05-20/2019-05-24. IEEE Xplore, 2019. p. 3039-3044. ISSN 1050-4729. ISBN 978-1-5386-6026-3. DOI 10.1109/ICRA.2019.8794339. Available from: https://ieeexplore.ieee.org/document/8794339

RYTÍŘ, P., L. CHRPA, and B. BOŠANSKÝ. Using Classical Planning in Adversarial Problems. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE 31st International Conference on Tools with Artificial Intelligence, Portland, 2019-11-04/2019-11-06. IEEE Xplore, 2019. p. 1335-1340. ISSN 2375-0197. ISBN 978-1-7281-3798-8. DOI 10.1109/ICTAI.2019.00185. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8995350

ŠTOLBA, M., et al. Cost Partitioning for Multi-agent Planning. In: Proceedings of the 11th International Conference on Agents and Artificial Intelligence. ICAART 2019: the 11th International Conference on Agents and Artificial Intelligence, Praha, 2019-02-19/2019-02-21. Lisboa: SCITEPRESS – Science and Technology Publications, Lda, 2019. p. 40-49. ISSN 2184-433X. ISBN 978-989-758-350-6. DOI 10.5220/0007256600400049.

BREJCHOVÁ, K., et al. Two-Stage Approach for Long-Term Motivation of Children to Study Robotics. In: Advances in Intelligent Systems and Computing. 9th International Conference on Robotics in Education, Malta, 2018-04-18/2018-04-20. Düsseldorf: Springer-VDI-Verlag, 2019. p. 137-148. ISSN 2194-5357. ISBN 978-3-319-97084-4. DOI 10.1007/978-3-319-97085-1_14.

ŠMÍDL, V., J. BÍM, and T. PEVNÝ. Orthogonal Approximation of Marginal Likelihood of Generative Models. In: Proceedings of the Bayesian Deep Learning. Bayesian Deep Learning, Vancouver, 2019-12-13. Amsterdam: University of Amsterdam, 2019.

HEIM, N., V. ŠMÍDL, and T. PEVNÝ. Rodent: Relevance determination in ODE. In: Proceedings of the Bayesian Deep Learning. Bayesian Deep Learning, Vancouver, 2019-12-13. Amsterdam: University of Amsterdam, 2019.

SCHAEFER, M., et al. Routing a Fleet of Automated Vehicles in a Capacitated Transportation Network. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IROS 2019: the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, 2019-11-04/2019-11-08. Piscataway, NJ: IEEE, 2019. p. 8223-8229. ISSN 2153-0866. ISBN 978-1-7281-4004-9. DOI 10.1109/IROS40897.2019.8967723. Available from: https://ieeexplore.ieee.org/document/8967723

VINTR, T., et al. Time-varying Pedestrian Flow Models for Service Robots. In: Proceedings of European Conference on Mobile Robots. European Conference on Mobile Robots 2019, Prague, 2019-08-04/2019-08-06. Prague: Czech Technical University, 2019. ISBN 978-1-7281-3605-9. DOI 10.1109/ECMR.2019.8870909. Available from: https://ieeexplore.ieee.org/abstract/document/8870909

BASMADJIAN, R., et al. An Interoperable Reservation System for Public Electric Vehicle Charging Stations: A Case Study in Germany. In: BuildSys '19: The 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. The 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, 2019-11-13/2019-11-14. New York: Association for Computing Machinery, 2019. p. 22-29. ISBN 978-1-4503-7015-8. DOI 10.1145/3364544.3364825.

BERNARD, S., et al. Exploiting Adversarial Embeddings for Better Steganography. In: Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, 2019-07-03/2019-07-05. New York: ACM, 2019. p. 216-221. ISBN 978-1-4503-6821-6. DOI 10.1145/3335203.3335737.

PRÁGR, M. and J. FAIGL. Benchmarking Incremental Regressors in Traversal Cost Assessment. In: Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. ICANN 2019 - The 28th International Conference on Artificial Neural Networks, Munich, 2019-09-17/2019-09-19. Basel: Springer, 2019. p. 685-697. Lecture Notes in Computer Science. vol. 11727. ISSN 0302-9743. ISBN 978-3-030-30486-7. DOI 10.1007/978-3-030-30487-4_52.

VALLATI, M., L. CHRPA, and D. KITCHIN. How to Plan Roadworks in Urban Regions? A Principled Approach Based on AI Planning. In: Computational Science - ICCS 2019. 19th International Conference on Computational Science 2019, Faro, 2019-06-12/2019-06-14. Cham: Springer, 2019. p. 453-460. ISSN 0302-9743. ISBN 978-3-030-22749-4.

SZADKOWSKI, R., J. DRCHAL, and J. FAIGL. Basic Evaluation Scenarios for Incrementally Trained Classifiers. In: Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019 - The 28th International Conference on Artificial Neural Networks, Munich, 2019-09-17/2019-09-19. Basel: Springer, 2019. p. 507-517. Lecture Notes in Computer Science. vol. 11728. ISSN 0302-9743. ISBN 978-3-030-30483-6. DOI 10.1007/978-3-030-30484-3_41.

PRÁGR, M., P. ČÍŽEK, and J. FAIGL. Traversal cost modeling based on motion characterization for multi-legged walking robots. In: PŘEUČIL, L., S. BEHNKE, and M. KULICH, eds. 2019 European Conference on Mobile Robots (ECMR). European Conference on Mobile Robots 2019, Prague, 2019-08-04/2019-08-06. St. Paul, Minnesota: IEEE, 2019. Proceedings. ISBN 978-1-7281-3605-9. DOI 10.1109/ECMR.2019.8870912. Available from: https://ieeexplore.ieee.org/abstract/document/8870912

VINTR, T., et al. Spatio-temporal Representation for Long-term Anticipation of Human Presence in Service Robotics. In: Proceedings of 2019 International Conference on Robotics and Automation. 2019 IEEE International Conference on Robotics and Automation, Montreal, 2019-05-20/2019-05-24. IEEE Xplore, 2019. p. 2620-2626. ISSN 1050-4729. ISBN 978-1-5386-6026-3. DOI 10.1109/ICRA.2019.8793534. Available from: https://ieeexplore.ieee.org/document/8793534

HORÁK, K. and B. BOŠANSKÝ. Solving Partially Observable Stochastic Games with Public Observations. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, 2019-01-27/2019-02-01. Menlo Park, California: AAAI Press, 2019. p. 2029-2036. ISSN 2159-5399. ISBN 978-1-57735-809-1. DOI 10.1609/aaai.v33i01.33012029.

VALLATI, M. and L. CHRPA. The International Competition on Knowledge Engineering for Planning and Scheduling: Food for Thoughts (and Call to Action). In: Proceedings of Workshop on Knowledge Engineering for Planning and Scheduling. Workshop on Knowledge Engineering for Planning and Scheduling, Berkeley, 2019-07-11/2019-07-15. Massachusetts: OpenReview.net / University of Massachusetts, 2019.

HALODOVÁ, L., et al. Predictive and Adaptive Maps for Long-term Visual Navigation in Changing Environments. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IROS 2019: the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, 2019-11-04/2019-11-08. Piscataway, NJ: IEEE, 2019. p. 7033-7039. ISSN 2153-0866. ISBN 978-1-7281-4004-9. DOI 10.1109/IROS40897.2019.8967994. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8967994

PRÁGR, M., et al. Online Incremental Learning of the Terrain Traversal Cost in Autonomous Exploration. In: Online Proceedings of Robotics Science and Systems. Robotics: Science and Systems, Freiburg, 2019-06-22/2019-06-26. Freiburg im Breisgau: Albert Ludwig University of Freiburg, 2019. ISBN 978-0-9923747-5-4. DOI 10.15607/RSS.2019.XV.040. Available from: http://www.roboticsproceedings.org/rss15/p40.html

PAČES, P. and V. UDATNÝ. Comparison of Flight-Planning Algorithms in View of Certification Requirements. In: ROY, A., et al., eds. IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). 38th Digital Avionics System Conference (DASC), San Diego, Californie, 2019-09-08/2019-09-12. Irvine, CA: IEEE, 2019. p. 1-1274. 1. vol. 1. ISSN 2155-7209. ISBN 978-1-7281-0649-6. Available from: https://2019.dasconline.org/

SZADKOWSKI, R., J. DRCHAL, and J. FAIGL. Autoencoders Covering Space as a Life-Long Classifier. In: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization. 13th International Workshop on Self-Organizing Maps, Barcelona, 2019-06-26/2019-06-28. Düsseldorf: Springer-VDI-Verlag, 2019. p. 271-281. ISSN 2194-5357. ISBN 978-3-030-19641-7. DOI 10.1007/978-3-030-19642-4_27.

NGUYEN, T.H., et al. Tackling Sequential Attacks in Security Games. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10th International Conference on Decision and Game Theory for Security, GameSec 2019; Stockholm; Sweden, Stockholm, 2019-10-30/2019-11-01. Wien: Springer, 2019. p. 331-351. vol. 11836. ISSN 0302-9743. ISBN 9783030324292. DOI 10.1007/978-3-030-32430-8_20.

GARCÍA, S., et al. Geost Botnet. Operational Security Failures of a New Android Banking Threat. In: Proceedings of 4th IEEE European Symposium on Security and Privacy. 4th IEEE European Symposium on Security and Privacy, Stockholm, 2019-06-17/2019-06-19. IEEE Xplore, 2019. p. 406-409. ISBN 978-1-7281-3026-2. DOI 10.1109/EuroSPW.2019.00051. Available from: https://ieeexplore.ieee.org/document/8802391

PRÁGR, M., P. ČÍŽEK, and J. FAIGL. Incremental Learning of Traversability Cost for Aerial Reconnaissance Support to Ground Units. In: Modelling and Simulation for Autonomous Systems. MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Basel: Springer, 2019. p. 412-421. LNCS. vol. 11472. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_30.

ŠUSTR, M., V. KOVAŘÍK, and V. LISÝ. Monte Carlo Continual Resolving for Online Strategy Computation in Imperfect Information Games. In: ELKIND, E., et al., eds. Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. AAMAS 2019: International Conference on Autonomous Agents and Multiagent Systems, Montreal, 2019-05-13/2019-05-17. New York: ACM, 2019. p. 224-232. ISSN 2523-5699. ISBN 978-1-4503-6309-9.

CHRPA, L. and M. VALLATI. Improving Domain-Independent Planning via Critical Section Macro-Operators. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, 2019-01-27/2019-02-01. Menlo Park, California: AAAI Press, 2019. p. 7546-7553. ISSN 2159-5399. ISBN 978-1-57735-809-1. DOI 10.1609/aaai.v33i01.33017546.

JANISCH, J., T. PEVNÝ, and V. LISÝ. Classification with Costly Features Using Deep Reinforcement Learning. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, 2019-01-27/2019-02-01. Menlo Park, California: AAAI Press, 2019. p. 3959-3966. ISSN 2159-5399. ISBN 978-1-57735-809-1. DOI 10.1609/aaai.v33i01.33013959.

VALLATI, M. and L. CHRPA. On the robustness of domain-independent planning engines: The impact of poorly-engineered knowledge. In: Proceedings of the 10th International Conference on Knowledge Capture. 10th International Conference on Knowledge Capture, Marina del Rey, 2019-11-19/2019-12-22. New York: ACM, 2019. p. 197-204. ISBN 978-1-4503-7008-0. DOI 10.1145/3360901.3364416. Available from: https://dl.acm.org/doi/10.1145/3360901.3364416

VÁŇA, P., J. FAIGL, and J. SLÁMA. Emergency landing aware surveillance planning for fixed-wing planes. In: PŘEUČIL, L., S. BEHNKE, and M. KULICH, eds. 2019 European Conference on Mobile Robots (ECMR). European Conference on Mobile Robots 2019, Prague, 2019-08-04/2019-08-06. St. Paul, Minnesota: IEEE, 2019. Proceedings. ISBN 978-1-7281-3605-9. DOI 10.1109/ECMR.2019.8870933. Available from: https://ieeexplore.ieee.org/document/8870933

FAIGL, J. and M. PRÁGR. Incremental Traversability Assessment Learning Using Growing Neural Gas Algorithm. In: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization. 13th International Workshop on Self-Organizing Maps, Barcelona, 2019-06-26/2019-06-28. Düsseldorf: Springer-VDI-Verlag, 2019. p. 166-176. ISSN 2194-5357. ISBN 978-3-030-19641-7. DOI 10.1007/978-3-030-19642-4_17.

ARVIN, F., T. KRAJNÍK, and T.A. EMRE. PΦSS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios. In: Modelling and Simulation for Autonomous Systems (MESAS 2018). MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Cham: Springer International Publishing AG, 2019. p. 351-364. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_26.

HALODOVÁ, L., et al. Adaptive Image Processing Methods for Outdoor Autonomous Vehicles. In: Modelling and Simulation for Autonomous Systems. MESAS 2018 - Modelling & Simulation for Autonomous Systems, Praha, 2018-10-17/2018-10-19. Basel: Springer, 2019. p. 456-476. LNCS. vol. 11472. ISSN 0302-9743. ISBN 978-3-030-14983-3. DOI 10.1007/978-3-030-14984-0_34.

VALEROS, V., M. RIGAKI, and S. GARCÍA. Machete: Dissecting the Operations of a Cyber Espionage Group in Latin America. In: Proceedings of 4th IEEE European Symposium on Security and Privacy. 4th IEEE European Symposium on Security and Privacy, Stockholm, 2019-06-17/2019-06-19. IEEE Xplore, 2019. p. 464-473. ISBN 978-1-7281-3026-2. DOI 10.1109/EuroSPW.2019.00058. Available from: https://ieeexplore.ieee.org/abstract/document/8802467

FIŠER, D., Á. TORRALBA, and A. SHLEYFMAN. Operator Mutexes and Symmetries for Simplifying Planning Tasks. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, 2019-01-27/2019-02-01. Menlo Park: AAAI Press, 2019. p. 7586-7593. ISBN 978-1-57735-809-1. DOI 10.1609/aaai.v33i01.33017586.

Unpublished Lectures

KRAJNÍK, T. Cyclic Spatio-Temporal Models for Long-term Mobile Robot Autonomy. [Unpublished Lecture] Instituto Superior Técnico. 2019-08-28.

KRAJNÍK, T. Chronorobotics: Cyclic Spatio-Temporal Models for Long-term Mobile Robot Autonomy. [Unpublished Lecture] Autonomus Systems Lab.. 2019-06-13.

KRAJNÍK, T. Adaptive Visual Teach and Repeat for Changing Environments. [Unpublished Lecture] The University of Sydny. 2019-10-27.

KRAJNÍK, T. Robust Vision for Mobile Robots. [Unpublished Lecture] Ingeniarius, Lda.. 2019-08-26.

KRAJNÍK, T. Chronorobotics: Modeling Time for Service Robots. [Unpublished Lecture] Queen Mary University in London. 2019-05-31.

The page was created 05.06.2020 05:00:01
Responsible person: RNDr. Patrik Mottl, Ph.D.