ČeskyEnglish

Popis předmětu - A8B01MC1

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
A8B01MC1 Matematika-kalkulus1 Rozsah výuky:4+2
Garanti:Tkadlec J. Role:P Zakončení:Z,ZK
Vyučující:Tkadlec J.
Zodpovědná katedra:13101 Kreditů:7 Semestr:Z

Anotace:

Cílem kurzu je seznámit studenty se základy diferenciálního a integrálního počtu funkce jedné proměnné.

Výsledek studentské ankety předmětu je zde: A8B01MC1

Osnovy přednášek:

1. Elementární funkce, limita a spojitost funkce.
2. Derivace funkce, její vlastnosti a aplikace.
3. Věty o střední hodnotě. L'Hospitalovo pravidlo.
4. Limita posloupnosti. Taylorův polynom.
5. Extrémy funkcí (lokální i absolutní), průběh funkce.
6. Primitivní funkce, základní metody výpočtu.
7. Integrace racionálních a dalších typů funkcí.
8. Určitý integrál (pomocí součtů). Newtonova-Leibnizova formule.
9. Numerický výpočet určitého integrálu. Aplikace pro výpočet ploch, objemů a délek.
10. Nevlastní integrál.
11. Diferenciální rovnice - formulace úlohy. Metoda separace proměnných .
12. Lineární diferenciální rovnice 1. řádu (variace konstanty).
13. Aplikace, numerické aspekty.
14. Rezerva

Osnovy cvičení:

1. Elementární funkce, limita a spojitost funkce.
2. Derivace funkce, její vlastnosti a aplikace.
3. Věty o střední hodnotě. L'Hospitalovo pravidlo.
4. Limita posloupnosti. Taylorův polynom.
5. Extrémy funkcí (lokální i absolutní), průběh funkce.
6. Primitivní funkce, základní metody výpočtu.
7. Integrace racionálních a dalších typů funkcí.
8. Určitý integrál (pomocí součtů). Newtonova-Leibnizova formule.
9. Numerický výpočet určitého integrálu. Aplikace pro výpočet ploch, objemů a délek.
10. Nevlastní integrál.
11. Diferenciální rovnice - formulace úlohy. Metoda separace proměnných .
12. Lineární diferenciální rovnice 1. řádu (variace konstant).
13. Aplikace, numerické aspekty.
14. Rezerva

Literatura:

1. J. Tkadlec: Diferenciální a integrální počet funkcí jedné proměnné. ČVUT Praha, 2004.
2. J. Tkadlec: Diferenciální rovnice. Laplaceova transformace. ČVUT Praha, 2005.

Požadavky:

Informace viz http://math.feld.cvut.cz/0educ/pozad/a3b01ma1.htm

Webová stránka:

http://math.feld.cvut.cz/tkadlec/ma1.htm

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPOES Před zařazením do oboru P 1


Stránka vytvořena 24.3.2017 18:00:25, semestry: Z,L/2016-7, Z,L/2017-8, Z/2018-9, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)
Za obsah odpovídá: doc. Ing. Ivan Jelínek, CSc.