# Popis předmětu - BE5B01DMG

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
BE5B01DMG Discrete Mathematics and Graphs
Role:P Rozsah výuky:3P+1S
Katedra:13101 Jazyk výuky:EN
Garanti:Demlová M. Zakončení:Z,ZK
Přednášející:Russo T. Kreditů:5
Cvičící:Russo T. Semestr:Z

Anotace:

The aim of the course is to introduce students to fundamentals of Discrete Mathematics with focus on electrical engineering. The content of the course covers fundamentals of propositional and predicate logic, infinite sets with focus on the notion of cardinality of sets, binary relations with focus on equivalences and partial orderings; integers, relation modulo; algebraic structures including Boolean algebras. Further, the course covers basics of the Theory of Graphs.

Cíle studia:

The goal of the course is to introduce students with the basic notions from discrete mathematics, namely logic, basics of set theory, binary relationsand binary operations; basics from graph theory and combinatorics.

Obsah:

 1 Foundation of Propositional logic, Boolean calculus. 2 Foundation of Predicate logic, quantifiers, interpretation. 3 Sets, cardinality of sets, countable and uncountable sets. 4 Binary relations on a set, equivalence relation, partial order. 5 Integers, Euclid (extended) algorithms. 6 Relation modulo n, congruence classes Zn and operations on Zn. 7 Algebraic operations, semigroups, groups. 8 Sets together with two binary operations, Boolean algebras. 9 Rings of congruence classes Zn, fields Zp. 10 Undirected graphs, trees and spanning trees. 11 Directed graphs, strong connectivity and acyclic graphs. 12 Euler graphs and Hamiltonian graphs, coloring. 13 Combinatorics.

Osnovy přednášek:

 1 Foundation of Propositional logic, Boolean calculus 2 Foundation of Predicate logic, quantifiers, interpretation. 3 Sets, cardinality of sets, countable and uncountable sets. 4 Binary relations on a set, equivalence relation, partial order. 5 Integers, Euclid (extended) algorithms. 6 Relation modulo n, congruence classes Zn and operations on Zn. 7 Algebraic operations, semigroups, groups. 8 Sets together with two binary operations, Boolean algebras. 9 Rings of congruence classes Zn, fields Zp. 10 Undirected graphs, trees and spanning trees. 11 Directed graphs, strong connectivity and acyclic graphs. 12 Euler graphs and Hamiltonian graphs, coloring. 13 Combinatorics.

Osnovy cvičení:

 1 Foundations of propositional and predicate logic. 2 Binary relations, equivalence and partial order. 3 Euclid algorithm, relation modulo n, congruence classes modulo n and operations with them. 4 Algebraic operations, semigroups, groups, fields Zp, Boolean algebras. 5 Undirected graphs, trees, spanning trees. 6 Directed graphs, strong connectivity, acyclic graphs. 7 Combinatorics.

Literatura:

 [1] Lindsay N. Childs: A Concrete Introduction to Higher Algebra, Springer; 3rd edition (November 26, 2008), ISBN-10: 0387745270 [2] Richard Johnsonbaugh: Discrete Mathematics, Prentice Hall, 4th edition (1997), ISBN 0-13-518242-5

Požadavky:

None.

Webová stránka:

https://math.feld.cvut.cz/0educ/BE5B01DMG.html

Klíčová slova:

Propositional and predicate logic, sets and their cardinality, binary relations, Euclid's algorithm, rezidual classes, semigroups, groups, undirected and directed graphs, trees, strong connectivity, acyclic graphs, combinatorics.

Předmět je zahrnut do těchto studijních plánů:

 Plán Obor Role Dop. semestr BEECS Před zařazením do oboru P 1 BPEECS_2018 Před zařazením do oboru P 1

 Stránka vytvořena 30.9.2020 11:50:33, semestry: Z,L/2020-1, L/2019-20, Z/2021-2, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)
Za obsah odpovídá: doc. Ing. Ivan Jelínek, CSc.