Popis předmětu - BE5B01PRS

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
BE5B01PRS Probability And Statistics Rozsah výuky:4+2
Garanti:Helisová K. Role:P Jazyk výuky:EN
Vyučující:Helisová K. Zakončení:Z,ZK
Zodpovědná katedra:13101 Kreditů:7 Semestr:Z

Anotace:

Cílem předmětu je seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Cíle studia:

Seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Obsah:

Cílem předmětu je seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Osnovy přednášek:

1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů a testování hypotéz.
14. Markovské řetězce.

Osnovy cvičení:

1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů a testování hypotéz.
14. Markovské řetězce.

Literatura:

[1] Papoulis, A.: Probability and Statistics, Prentice-Hall, 1990.
[2] Stewart W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press 2009.

Požadavky:

Základní metody výpočtu integrálů.

Webová stránka:

http://math.feld.cvut.cz/helisova/01pstimfe.html

Klíčová slova:

Pravděpodobnost, statistika.

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BEECS Před zařazením do oboru P 3


Stránka vytvořena 16.10.2018 17:47:59, semestry: Z,L/2020-1, L/2017-8, L/2019-20, Z,L/2018-9, Z/2019-20, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)
Za obsah odpovídá: doc. Ing. Ivan Jelínek, CSc.