Popis předmětu - BE3M35LSY

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
BE3M35LSY Linear Systems Rozsah výuky:4p+2c
Garanti:Hušek P. Role:P Zakončení:Z,ZK
Vyučující:Hušek P.
Zodpovědná katedra:13135 Kreditů:8 Semestr:Z


The purpose of this course is to introduce mathematical tools for the description, analysis, and partly also synthesis, of dynamical systems. The focus will be on linear time-invariant multi-input multi-output systems and their properties such as stability, controllability, observability and state realization. State feedback, state estimation, and the design of stabilizing controllers will be explained in detail. Partially covered will be also time-varying and nonlinear systems. Some of the tools introduced in this course are readily applicable to engineering problems such as the analysis of controllability and observability in the design of flexible space structures, the design of state feedback in aircraft control, and the estimation of state variables. The main motivation, however, is to pave the way for the advanced courses of the study program. The prerequsites for this course include undergraduate level linear algebra, differential equations, and Laplace and z transforms.

Osnovy přednášek:

Systems and signals. Linear and time-invariant systems. Differential and difference systems. The concept of state, state equations. Solving the state equations, modes of the system. Equivalence of systems. Continuous-time, discrete-time, and sampled-data systems. Lyapunov stability, exponential stability, internal and external stability properties of linear systems. Reachability and controllability of systems. Observability and constructibility of systems. Dual systems. Standard forms for systems, Hautus' tests, Kalman's decomposition. Internal and external descriptions of systems, impulse response and transfer function. Poles and zeros of systems. State realizations of external descriptions. Minimal realizations, balanced realizations. State feedback, state regulation, pole assignment, LQ regulator. Output injection, state estimation, LQ estimator. Interconnection of systems, feedback controllers, stabilizing controllers. State representation of stabilizing controllers. Separation property of state regulation and estimation.

Osnovy cvičení:

For each exercise session, a list of exercises from the previous lecture is made available that the student is requested to solve and deliver the solutions prior to the session. Each session begins by a short test, then the exercise solutions will be checked and discussed, and difficult points will be explained.


There are no formal prerequisites to register the course. However, an undergraduate course on systems and control. The knowledge required for the course includes undergraduate level differential equations, linear algebra, Laplace and z transforms as presented in the recommended textbook (P. J. Antsaklis, A. N. Michel: A Linear Systems Primer, Birkhäuser, 2007 - Sections 1.2, 1.3, 1.5; Tables 3.1, 3.2, 3.3, 3.4; Appendix A).



Stránky předmětu: http://moodle.dce.fel.cvut.cz/course/view.php?id=18 .

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
MEKYR1_2016 Robotika P 1
MEKYR5_2016 Kybernetika a robotika P 1
MEKYR4_2016 Letecké a kosmické systémy P 1
MEKYR3_2016 Systémy a řízení P 1
MEKYR2_2016 Senzory a přístrojová technika P 1

Stránka vytvořena 26.9.2017 05:47:18, semestry: L/2016-7, Z,L/2017-8, Z/2018-9, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)
Za obsah odpovídá: doc. Ing. Ivan Jelínek, CSc.