Subject description - AD3B31EOP

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
 AD3B31EOP Electrical Circuits and Elements Extent of teaching: 28+6c Guarantors: Roles: P,V Language ofteaching: CS Teachers: Completion: Z,ZK Responsible Department: 13131 Credits: 8 Semester: Z

Anotation:

The Subject deals with basic and most important principles of the electrical circuit analysis. It defines basic circuit variables and elements, and real components of actual electrical equipments. Subject deals with basic metods of the circuit analysis. It is oriented on basic thematic units of the analogue and digital technics that are necessary for the cybernetics and control technique study.

Study targets:

The goal of this subject consists in the teaching of the circuit theory base from the viewpoint of the cybernetics and control circuit study

Course outlines:

 1 Circiut variables (voltage, current, instantaneous power, electrical energy) 2 Circuit elements (passive two-terminals, active two-terminals, coupled inductors,
controlled sources, nonselfgoverning two-ports)
 3 Basic laws, principles and theorems in electrical circuits 4 Elements of actual electrical equipments (semiconductor diode - PN junction, bipolar
transistor, unipolar transistor (JFET, MOSFET), ideal operational amplifier, actual operational amplifier)
 5 Linear electrical circuit analysis methods in time domain 6 Transients in RL, RC a RLC circuits with DC excitation, context with frequency
response
 7 Feedback, Nyquist?s characteristic, stability 8 Linear operational networks (controlled sources realization, inverting voltage
amplifier, noninverting voltage amplifier, voltage follower, adding amplifier, integrator, differentiator), nonlinear operational network (logarithmic amplifier)
 9 Transistor amplifiers (CE, CC, CB), their parameters 10 Semiconductor switches 11 Classic power supply sources (transformer, rectifier, filter, stabilizer),
switching sources
 12 Basic logic elements, struktures TTL, Schottky, Low power Schottky, CMOS. Input and
output charakteristics of logic elements, their loading capacity and matching. Output stages of logic elements (push-pull, opened collector - wired-OR, threestate output)
 13 Periodic waveforms generation, oscillators 14 Memories ROM, PROM, EPROM, EEPROM, programmable logic arrays PLA, static and dynamic
semiconductor memories RWM

Exercises outline:

 1 Circuit variables 2 Electrical circuit elements 3 Basic laws, principles and theorems in electrical circuits 4 Elements of actual electrical equipments 5 Linear electrical circuit analysis methods in time domain 6 Transients in RL, RC a RLC circuits, context with frequency response 7 Feedback, Nyquist?s characteristic, stability 8 Linear and nonlinear operational network 9 Transistor amplifiers 10 Semiconductor switches 11 Power supply sources 12 Basic logic elements, their characteristics, matching 13 Periodic waveforms generation, oscillators 14 Memories ROM, PROM, EPROM, EEPROM, programmable logic arrays PLA,
static and dynamic semiconductor memories RWM

Literature:

 1 Mikulec M., Havlíček V.: Basic Circuit Theory, Vydavatelství ČVUT, Praha,2008, ISBN 80-01-02127-0 2 Irwin, J. D., Nelms R. M.: Basic engineering circuit analysis: / 9th ed., Wiley, 2008, ISBN 0470128690 3 Floyd T. L.: Principles of Electric Circuits, Conventional Current Version, 8th ed., Pearsen Prentice Hall, ISBN 0-13-170179-7 4 Alexander Ch. K., Sadiku M., N. O.: Fundamentals of Electric Circuits, 3rd ed., Mc Graw Hill, ISBN: 978-0-07-297718-9 5 Sedra, Smith: Microelectronic circuits, Oxford Univ Press 2007 7 Nilsson: Electric circuits, Prentice Hall 2004

Requirements:

* Fair knowledge of mathematics:
 a) 1 variable function analysis b) basic infinitesimal calculus c) differential equations d) series e) complex variable f) transformations g) introduction to linear algebra
* Fair knowledge of physics :
 a) mechanics b) Introduction to electricity and magnetism(Maxwell's equations)
* Basic knowledge of signal theory

Webpage:

http://amber.feld.cvut.cz/magnetgroup/index.php/vyuka/eop

Subject is included into these academic programs:

 Program Branch Role Recommended semester BKOI1 Computer Systems V 3 BKOI_BO Common courses V 3 BKOI3 Software Systems V 3 BKOI2 Computer and Information Science V 3 BKEEM1 Applied Electrical Engineering V 3 BKEEM_BO Common courses V 3 BKEEM2 Electrical Engineering and Management V 3 BKKYR1 Robotics P 3 BKKYR_BO Common courses P 3 BKKYR3 Systems and Control P 3 BKKYR2 Sensors and Instrumentation P 3 BKKME1 Communication Technology V 3 BKKME_BO Common courses V 3 BKKME4 Network and Information Technology V 3 BKKME3 Applied Electronics V 3 BKKME2 Multimedia Technology V 3 BIS(ECTS)-D Intelligent Systems V 3 BKSTMWM Web and Multimedia V 3 BKSTMSI Software Engineering V 3 BKSTMMI Manager Informatics V 3 BKSTMIS Intelligent Systems V 3 BKSTM_BO Common courses V 3 BSI(ECTS)-D Software Engineering V 3 BWM(ECTS)-D Web and Multimedia V 3 BMI(ECTS)-D Manager Informatics V 3

 Page updated 24.6.2019 17:52:59, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)