Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
 AD3M33PRO Advanced robotics Extent of teaching: 14+6L Guarantors: Roles: PO,V Language ofteaching: CS Teachers: Completion: Z,ZK Responsible Department: 13133 Credits: 6 Semester: Z

Anotation:

We will explain and demonstrate techniques for modelling, analyzing and identifying robot kinematics. We will explain more advanced principles of the representation of motion in space and the robot descriptions suitable for identification of kinematic parameters from measured data. We will explain how to solve the inverse kinematic task of 6DOF serial manipulators and how it can be used to identify its kinematic parameters. Theory will be demonstrated on simulated tasks and verified on a real industrial robot.

Study targets:

The goal is do present more advanced methods of analysis and modeling of robot kinematics.

Course outlines:

 1 Introduction, algebraic equations and eigenvalues 2 Motion: Motion as a transformation of coordinates 3 Kinematics: Denavit-Hartenberg convention for a manipulator 4 Solving algebraic equations 5 Motion axis and the rotation matrix 6 Inverse kinematic task of a general 6R serial manipulator I 7. Inverse kinematic task of a general 6R serial manipulator II 8 Rotation reprezentation and parameterization 9 Angle-axis parameterization 10 Quaternions 11 Manipulator calibration 12 Summary and review.

Exercises outline:

 1 Introduction to laboratory, Maple, a-test. 2 Correcting a-test, Maple. 3 Spatial rotations, representations, axis of motion. 4 Modified Denavit-Hartenberg notation. 5 Kinematics of redundant manipulator. 6 Solving algebraic equations. 7 Singular poses of a manipulator and their determination. 8 Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator. 9 Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator. 10 Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator. 11 Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator. 12 Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator. 13 Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator. 14 Presentation of solutions.

Literature:

 H. Asada, J.-J. E. Slotine. Robot Analysis and Control. Wiley-Interscience, 1986. P. Pták. Introduction to Linear Algebra. Vydavatelství ČVUT, Praha, 2007. A. Karger, M. Kargerová: Základy robotiky a prostorové kinematiky, Vydavatelství ČVUT,
Praha, 2000

Requirements:

A course of basic robotics, e.g. A3B33ROB.

Webpage:

https://cw.felk.cvut.cz/wiki/courses/a3m33pro/start

Keywords:

robotics, kinematics, trajectory, identification, modelling

Subject is included into these academic programs:

 Program Branch Role Recommended semester MKEEM1 Technological Systems V 3 MKEEM5 Economy and Management of Electrical Engineering V 3 MKEEM4 Economy and Management of Power Engineering V 3 MKEEM3 Electrical Power Engineering V 3 MKEEM2 Electrical Machines, Apparatus and Drives V 3 MKKME1 Wireless Communication V 3 MKKME5 Systems of Communication V 3 MKKME4 Networks of Electronic Communication V 3 MKKME3 Electronics V 3 MKKME2 Multimedia Technology V 3 MKKYR1 Robotics PO 3 MKOI1 Artificial Intelligence V 3 MKOI5 Software Engineering V 3 MKOI4 Computer Graphics and Interaction V 3 MKOI3 Computer Vision and Image Processing V 3 MKOI2 Computer Engineering V 3

 Page updated 26.6.2019 17:52:50, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)