Subject description - A2M17MOS

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A2M17MOS Microwave Circuits and Subsystems Extent of teaching:2+2c
Guarantors:  Roles:PO,V Language of
teaching:
CS
Teachers:  Completion:Z,ZK
Responsible Department:13117 Credits:5 Semester:L

Anotation:

The subject provides wide theoretical and practical knowledge both for scientific-research work and carrier profession in the field of rf. and microwave region. It makes students familiar with rf. and microwave passive and active circuits realized in planar and monolithic structures - lines, directional couplers, power dividers, resonant circuits, filters and CAD tools for design of rf. and microwave circuits. It also contains basis of microwave transistors, bipolar, MESFET and HEMPT, design of low noise, power, narrow band and wideband amplifiers, diode and transistor oscillators, detectors, mixer and frequency multipliers

Study targets:

The subject provides wide theoretical and practical knowledge both for scientific-research work and carrier profession in the field of rf. and microwave region.

Course outlines:

1. Planar and monolithic technology
2. Lines in planar and monolithic structures
3. Coupled lines and directional coupler
4. Hybrid couplers - Lange, branch line, rat race, de Ronde
5. Power dividers for equal ad different power ratio
6. Microwave planar resonant circuits and filters
7. Structures of bipolar transistor, MESFET and HEMPT, definition of gains, stability
8. Low noise and power amplifiers
9. Narrow and wideband amplifiers
10. Parameters of rf. nonlinear circuits, noise, inter-modulation, cross-modulation, compression
11. Microwave diode and transistor oscillators
12. Rf. and microwave detectors and mixers
13. Diode and transistor frequency multipliers
14. Microwave subsystems of communication systems

Exercises outline:

1. CAD tools, Microwave Office, simulation of connector connection on microstrip line
2. Project 1. Simple planar lines
3. Project 2. Coupled lines, directional coupler
4. Project 3. Hybrid couplers
5. Project 4. Power dividers
6. Project 5. Planar filters I.
7. Project 6. Planar filters II.
8. Project 7. Low noise amplifier
9. Project 8. Power amplifier
10. Project 9. Transistor oscillator
11. Project 10. Frequency multiplier
12. work on projects
13. work on projects
14. work on projects, final checking

Literature:

Lee T. H., Planar Microwave Engineering, Cambridge University Press Vendelin, Pavio, Rohde, Microwave Circuit Design Usány Linear and Nonlinear Techniques, John Willey

Requirements:

Smith chart and impedance matching, properties of electromagnetic wave on a line, s-parameters Assesment is a contition for registration for the exam. Successful elaborations of all demanded projects is necessary to obtain the assesment. https://moodle.fel.cvut.cz/

Webpage:

https://moodle.fel.cvut.cz/courses/A2M17MOS

Keywords:

Planar microwave components, microwave, passive circuits, active circuits, amplifier, oscillator, multiplier, mixer, microstrip, microwave filter

Subject is included into these academic programs:

Program Branch Role Recommended semester
MPIB Common courses V
MPEEM1 Technological Systems V 2
MPEEM5 Economy and Management of Electrical Engineering V 2
MPEEM4 Economy and Management of Power Engineering V 2
MPEEM3 Electrical Power Engineering V 2
MPEEM2 Electrical Machines, Apparatus and Drives V 2
MPKME1 Wireless Communication PO 2
MPKYR4 Aerospace Systems V 2
MPKYR1 Robotics V 2
MPKYR3 Systems and Control V 2
MPKYR2 Sensors and Instrumentation V 2


Page updated 24.6.2019 17:52:59, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)