Subject description - A1B14PO1

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A1B14PO1 Electric Drives and Traction 1 Extent of teaching:2+2L
Guarantors:Pavelka J. Roles:P,V Language of
Teachers:Kobrle P. Completion:Z,ZK
Responsible Department:13114 Credits:6 Semester:Z


Application of motion equation in drives, the motor torque, the load torque, the dynamical torque. Operating modes, electromechanical transient effects. Drives with DC motors, induction motors, synchronous motors, SRM, EC motors, linear motors. For each type its properties, speed control strategy and block scheme of a controller, range of application. Drive control computer structure, shared resources organization, special hardware blocks for signal measurement and signal generation in drives, programming techniques and languages for software development and debugging, migration from analog signal processing to the digital signal processing, time sampling and amplitude quantization, aliasing, difference equations and digital control algorithms. Drive commissioning

Course outlines:

1. Definition of electric drive, logic control drives.
2. Continuous regulation, transmissions, static and dynamic behavior of the controlled system equation.
3. Analysis of operating conditions, electromechanics transient phenomena.
4. Block schemes of drives with DC motors, mathematical model.
5. Drives with asynchronous motors, coordinate transformation, the principle of vector control and direct torque control.
6. Drives with synchronous motors, excitation systems, speed control of synchronous motors.
7. Drives with EC motors, SRM drives.
8. Transition from analogue to digital signal processing, time sampling and amplitude quantization.
9. Differential equations and digital control algorithms.
10. The control computer for electrical drives and its structure.
11. Organisation of shared resources control computer system interrupts, DMA system.
12. Special circuit blocks to support the measurement and signal generation in the electric drives.
13. Programming techniques and languages ??for software development and testing of electric drives.
14. Reserve

Exercises outline:

1. Revision of knowledge from electrical machines and power electronics
2. Introduction of the drive laboratory, safety regulations, laboratory order
3. Contact control of the electric drive, realization on the logic automaton
4. Calculating the behavior of the digital system in the time and frequency domains
5. Calculation of PSD controller
6. Transients of electric drives, measurement of time constants
7. Measurement of inertia torque and dynamic torque characteristics of asynchronous motor
8. Sizing - determination of motor power during cyclic loading of the drive
9. Direct current driven motor powered by thyristor-controlled reversing rectifier - mechanical drive characteristic measurement
10. Speed ??control of asynchronous motor with frequency inverter
11. Different ways of starting an asynchronous motor
12. Synchronous motor
13. Measurement on doubly fed motor
14. Assesment


[1] CHIASSON, John Nelson. Modeling and high performance control of electric machines. Hoboken: Wiley, 2005. ISBN 0-471-68449-X.
[2] LEONHARD, Werner. Control of electrical drives. 3rd ed. Berlin: Springer, 2001. xviii, 460 s. ISBN 3-540-41820-2.
[3] Ned Mohan, William P. Robbins, Tore M. Undeland: WIE Power Electronics: Converters, Applications and Design, Media Enhanced , 3rd Edition, John Wiley & Sons, Inc., New York, March 2003


Active participation on labs (max.3 excused absences), elaboration of check test, presentment of own lab works


Subject is included into these academic programs:

Program Branch Role Recommended semester
BPOI1 Computer Systems V 5
BPOI_BO Common courses V 5
BPOI3 Software Systems V 5
BPOI2 Computer and Information Science V 5
BPKYR1 Robotics V 5
BPKYR_BO Common courses V 5
BPKYR3 Systems and Control V 5
BPKYR2 Sensors and Instrumentation V 5
BPKME1 Communication Technology V 5
BPKME5 Komunikace a elektronika V 5
BPKME_BO Common courses V 5
BPKME4 Network and Information Technology V 5
BPKME3 Applied Electronics V 5
BPKME2 Multimedia Technology V 5
BPEEM1 Applied Electrical Engineering P 5
BPEEM_BO Common courses P 5
BPEEM2 Electrical Engineering and Management P 5
BMI(ECTS) Manager Informatics V 5
BWM(ECTS) Web and Multimedia V 5
BIS(ECTS) Intelligent Systems V 5
BSI(ECTS) Software Engineering V 5

Page updated 27.5.2019 07:53:08, semester: Z,L/2020-1, L/2019-20, Z,L/2018-9, Z/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)