Subject description - A1M14PO2

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
 A1M14PO2 Electric Drives and Traction 2 Extent of teaching: 2+2L Guarantors: Roles: P,V Language ofteaching: CS Teachers: Completion: Z,ZK Responsible Department: 13114 Credits: 5 Semester: L

Anotation:

Electro mobiles and hybrid cars. Tire train and rolling resistance. Adhesion. Traction power. Locomotive traction power calculation for defined train load and track. Mass transportation vehicles. Tramway with resistive control, pulse control and induction motors. Tramway power-electronic converters. Trolley-busses. Metro. Electric locomotives - various designs. Locomotive power-converters. DC, AC and multi-system locomotives. AC motor locomotives. Diesel-electric locomotives

Course outlines:

 1 Sizing and design of drives with asynchronous motors. 2 Sizing of drives with asynchronous motors fed by the frequency converter. 3 Drives with a fan characteristic. 4 Electric drives in explosive environments. 5 Reliability of electrical drives. 6 Electric actuators for special purposes. 7 Technical documentation. 8 Mobility in society and its energy consequences. 9 Hybridization and electrification drive cars. 10 Systems of hybrid cars. 11 Electrovehicles. 12 Trams in public transport. 13 Electric locomotives. 14 Reserve.

Exercises outline:

 1 Introduction, occupational safety 2 Dimensioning of drives with induction machines 3 Mathematical model of a DC machine - deriving 4 Mathematical model of a DC machine - realization 5 Mathematical model of a DC machine - influence of parameters changing 6 Control loops of a DC motor 7 Mathematical model of an induction machine 8 Field oriented control of an induction motor ? introduction 9 Field oriented control of an induction motor ? model 10 Field oriented control vs. scalar control of an induction motor, influence of parameters changing 11 Traction drive - simulation 1 12 Traction drive - simulation 2 13 Traction drive - simulation 3 14 Reports checking

Literature:

 [1] CHIASSON, John Nelson. Modeling and high performance control of electric machines. Hoboken: Wiley, 2005. ISBN 0-471-68449-X. [2] LEONHARD, Werner. Control of electrical drives. 3rd ed. Berlin: Springer, 2001. xviii, 460 s. ISBN 3-540-41820-2. [3] IWNICKI, S., ed. Handbook of railway vehicle dynamics. Boca Raton: CRC/Taylor & Francis, 2006. 535 s. ISBN 0-8493-3321-0. [4] www.mathworks.com [5] OGUNSOLA, Ade a Andrea MARISCOTTI. Electromagnetic compatibility in railways: analysis and management. 1st ed. New York: Springer, 2012. xix, 528 s. Lecture notes in electrical engineering; 168. ISBN 978-3-642-30280-0. [6] Steimel, A.: Electric Traction-Motive Power and Energy Supply. München, Oldenburg Industrieverlag, 2008.

Requirements:

Credit conditions: Attendance by the study laws, activity during the exercises, checled laboratory reports. Defense of the semestral work

Webpage:

https://moodle.fel.cvut.cz/courses/A1M14PO2

Subject is included into these academic programs:

 Program Branch Role Recommended semester MPIB Common courses V – MPKME1 Wireless Communication V 2 MPKME5 Systems of Communication V 2 MPKME4 Networks of Electronic Communication V 2 MPKME3 Electronics V 2 MPKME2 Multimedia Technology V 2 MPEEM1 Technological Systems P 2 MPEEM3 Electrical Power Engineering P 2 MPEEM2 Electrical Machines, Apparatus and Drives P 2 MPKYR4 Aerospace Systems V 2 MPKYR1 Robotics V 2 MPKYR3 Systems and Control V 2 MPKYR2 Sensors and Instrumentation V 2

 Page updated 17.6.2019 09:52:48, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)