Subject description - A2M17CAD

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A2M17CAD CAD and Microwave Circuits Extent of teaching:2+2c
Guarantors:  Roles:PO,V Language of
teaching:
CS
Teachers:  Completion:Z,ZK
Responsible Department:13117 Credits:6 Semester:Z

Anotation:

This course provides its students with principles and techniques used in modern microwave circuits as well as with basic design methods used in such systems. Basic overwiev of elements and detailed information on selected circuit design is provided. Students gain design experience during exercises.

Study targets:

This course provides its students with principles and techniques used in modern microwave circuits as well as with basic design methods used in such systems.

Course outlines:

1. Introduction - microwave technology and its specifics, wave propagating through an electric circuit.
2. Transmission lines and waves, standing waves, narrowband impedance matching.
3. Broadband impedance matching, Fano limit, correspondence between matching circuits and filters
4. Multiport matching, stability of a two-port, single stage amplifier design
5. Real lines used in MIO design, microstrip line, coplanar waveguide
6. Line discontinuities
7. Coupled lines, couplers
8. Power dividers, directional couplers
9. Circuit optimization, error function, local and global methods
10. Nonlinear microwave circuit analysis, harmonic balance
11. Numerical analysis of electromagnetiuc field and field simulators in frequency domain.
12. Time domain analysis (FDTD, FETD)
13. Optoelectrronic circuits
14. Modern trends (MEMS, metamaterials)

Exercises outline:

1. Introduction. Problems resulting from finite circuit dimensions - and how to make use of it.
2. (Standing) waves on transmission lines, impedance transformation, impedance matching using lines and stubs.
3. Introduction to CAD system. Individual task assignment.
4. Broadband matching circuit design - analytic, optimization.
5. Single stage transistor amplifier design (unconditionally stable transistor) - rf part.
6. Návrh napájecích obvodů zesilovače.
7. Návrh motivu zesilovače v planární struktuře.
8. Task 1 finalization.
9. Optimization method comparison.
10. Design - task 2.
11. Design - task 2.
12. Fierld simulator.
13. Optoelectronic circuit simulation.
14. Task submission. Assesment.

Literature:

[1] Gupta, K.C., Garg, R., Chadha, R.: Computer-Aided Design of Microwave Circuits. Artech House, Dedham 1981

Requirements:

https://moodle.fel.cvut.cz/

Webpage:

https://moodle.fel.cvut.cz/courses/A2M17CAD

Keywords:

Computer aided design Radiofrequency circuits Microwaves Transmission lines Optimization

Subject is included into these academic programs:

Program Branch Role Recommended semester
MPIB Common courses V
MPKME3 Electronics PO 3
MPEEM1 Technological Systems V 3
MPEEM5 Economy and Management of Electrical Engineering V 3
MPEEM4 Economy and Management of Power Engineering V 3
MPEEM3 Electrical Power Engineering V 3
MPEEM2 Electrical Machines, Apparatus and Drives V 3
MPKYR4 Aerospace Systems V 3
MPKYR1 Robotics V 3
MPKYR3 Systems and Control V 3
MPKYR2 Sensors and Instrumentation V 3


Page updated 17.6.2019 05:52:56, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)