Subject description - AD2B17OKS

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
AD2B17OKS Optical Communication Systems Extent of teaching:14+6c
Guarantors:  Roles:PO,V Language of
teaching:
CS
Teachers:  Completion:Z,ZK
Responsible Department:13117 Credits:6 Semester:Z

Anotation:

The main aim of the subject is to introduce principals of the optical system theory. The subject includes theoretical background of optics, practical skills for design of optical systems with utilization of professional software. Moreover it incorporates electron optics, matrix optics, Gaussian beams, transition through optical components, absorption and dispersion, optical transmitter and receiver, detection, fundamental technology and measurement of optical waveguides.

Study targets:

The main aim of the subject is to introduce principals of the optical system theory.

Course outlines:

1. Principal elements of optical and sub-millimeter communication systems
2. Wave optics, matrix optics, transition matrixes of particular components
3. Principles of geometrical and wave optics, beam propagation in inhomogeneous material
4. Analysis of optical signal propagation in optical fiber based on geometrical optics and solving of wave equation - mode structure
5. Gaussian beams, transition through optical components
6. Absorption and dispersion, propagation of pulses in dispersive environment
7. Transition properties of optical fibers
8. Optical transmitter and receiver
9. Direct and coherent detection, noises in optical systems
10. Design of optical and sub-millimeter communication system
11. Free Space Optics (FSO)
12. Special optical fibers, fibers for optical sensors, optical sensor systems
13. Optical fiber fabrication, measurement
14. Professional software for optical system analyzing

Exercises outline:

1. Recapitulation of essential knowledge from optics and electromagnetic field
2. Propagation of optical waves in homogenous and non-homogenous environment
3. Solving of planar waveguides by geometrical optics methods
4. Solving of planar waveguides by wave optics methods
5. The first project: Homogenous planar waveguide, assignment, solving
6. Examples of non-homogenous planar waveguide solving
7. Enumeration of basic parameters of optical fibers SI and GRIN
8. Dispersion of fiber waveguides, solution of particular examples
9. The second project: Design of optical link with en emphasis on attenuation and dispersion 10. Special software demonstration - Beam Propagation method, ray tracing method
11. Transition matrixes of fibers, couplers etc.
12. Gaussian beams - divergence
13. The third project: Transition of Gaussian beam through optical components
14. Design of sub-millimeter communication link

Literature:

[1] Agrawal G. P.: Fiber-Optic Communications Systems, Third Edition., John Wiley & Sons, 2002

Requirements:

An active attendance of tutorials together with 3 elaborated semester projects have to be fulfilled to reach an ungraded assessment. https://moodle.fel.cvut.cz/

Webpage:

http://moodle.fel.cvut.cz

Keywords:

fibre optics, communication systems

Subject is included into these academic programs:

Program Branch Role Recommended semester
BKOI1 Computer Systems V 5
BKOI_BO Common courses V 5
BKOI3 Software Systems V 5
BKOI2 Computer and Information Science V 5
BKKME4 Network and Information Technology PO 5
BKEEM1 Applied Electrical Engineering V 5
BKEEM_BO Common courses V 5
BKEEM2 Electrical Engineering and Management V 5
BKKYR1 Robotics V 5
BKKYR_BO Common courses V 5
BKKYR3 Systems and Control V 5
BKKYR2 Sensors and Instrumentation V 5
BIS(ECTS)-D Intelligent Systems V 5
BKSTMWM Web and Multimedia V 5
BKSTMSI Software Engineering V 5
BKSTMMI Manager Informatics V 5
BKSTMIS Intelligent Systems V 5
BKSTM_BO Common courses V 5
BSI(ECTS)-D Software Engineering V 5
BWM(ECTS)-D Web and Multimedia V 5
BMI(ECTS)-D Manager Informatics V 5


Page updated 18.6.2019 17:53:02, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)