Subject description - AE0M02FPL

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
AE0M02FPL Solid State Physics Extent of teaching:2+2s
Guarantors:  Roles:V Language of
teaching:
CS
Teachers:  Completion:Z,ZK
Responsible Department:13102 Credits:5 Semester:Z

Anotation:

Elementary physics of solids for students of electrotechnology. Dwescription and classification of solids. Thermal properties of solids. Types of bonds in solids. Real crystals, their defects and surfaces. Electrons in solids, the band structure, electrons and holes. Metals, semiconductors, insulators. Transport phenomena, generation and recombination of minority carriers. Magnetism, magnetic properties of solids. Optical phenomena in solids, luminiscence, stimulated emission.

Course outlines:

1. Condensed matter, solids, their description; crystals.
2. Classification of crystals, reciprocal lattice.
3. Experimental methods in solid state physics.
4. Dynamics of a crystal lattice; thermal properties of solids.
5. Imperfections in solids; point defects, dislocations; surfaces, nanocrystals.
6. Interatomic forces in solids; van der Waals crystals.
7. Ionic and covalent bonds.
8. Dielectrics and their electric properties, ferroelectrics.
9. Metals, the Fermi gas of free electrons, the Fermi surfaces.
10. Superconductivity, high-temperature superconductivity.
11. Semiconductors, their band structure.
12. Transport phenomena in semiconductors, generation and recombination of minority carriers.
13. Magnetic properties of solids, order and disorder of spins in a solid.
14. Optical properties of solids, luminescence.

Exercises outline:

1. Introduction, introduction to crystalography.
2. Lattices, reciprocal lattices.
3. Phase diagram and its use.
4. Dynamic properties of lattices.
5. Quantum states in solids, phonons (an outline).
6. Diffusion in ionic crystals, ionic conductivity.
7. Temperature response of conductivity in solids.
8. Electric permitivity as a function of temperature and frequency.
9. Electric conductivity of metals as a function of temperature and frequency.
10. Superconductivity.
11. Band scheme of a semiconductor.
12. Generation of minority carriers.
13. Ferromagnetics, ferrites.
14. Concluding discussion concerning physics of matter.

Literature:

1. Ch. Kittel: Introduction to Solid State Physics

Requirements:

Seminars attendance and semestral thesis submission.

Subject is included into these academic programs:

Program Branch Role Recommended semester
MEKME1 Wireless Communication V
MEKME5 Systems of Communication V
MEKME4 Networks of Electronic Communication V
MEKME3 Electronics V
MEKME2 Multimedia Technology V
MEOI1 Artificial Intelligence V
MEOI5NEW Software Engineering V
MEOI5 Software Engineering V
MEOI4 Computer Graphics and Interaction V
MEOI3 Computer Vision and Image Processing V
MEOI2 Computer Engineering V
MEEEM1 Technological Systems V
MEEEM5 Economy and Management of Electrical Engineering V
MEEEM4 Economy and Management of Power Engineering V
MEEEM3 Electrical Power Engineering V
MEEEM2 Electrical Machines, Apparatus and Drives V
MEKYR4 Aerospace Systems V
MEKYR1 Robotics V
MEKYR3 Systems and Control V
MEKYR2 Sensors and Instrumentation V


Page updated 24.6.2019 12:52:41, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)