Subject description - AE3B38DSY

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
AE3B38DSY Distributed Systems and Computer Networks Extent of teaching:4P+2L
Guarantors:  Roles:P,V Language of
teaching:
EN
Teachers:  Completion:Z,ZK
Responsible Department:13138 Credits:7 Semester:Z

Anotation:

Subject is devoted to principles and technologies of distributed systems (DS) and to their employment in typical applications. Physical layer media, analog and digital modulations, DS topologies, MAC methods, coding and cryptography basics are introduced. Widely used standard systems are then presented together with their features. Internet protocols are explained and internetworking approaches presented. Finally the typical industrial applications of distributed systems are introduced.

Course outlines:

1. Introduction, basic terms definition, ISO/OSI model, layer functionality
2. Metallic, optic a wireless physical media, features and application parameters
3. Analog and digital modulations, principles, features and applications
4. MAC methods and their characteristics, data transfer types, channel capacity sharing, physical and logical topologies, basic interfaces (EIA232, 422, 485, current loop, USB)
5. Channel coding, error detection and correction coding, symmetric and asymmetric ciphering, digital signature
6. Industrial distributed systems X computer networks - features and differences
7. Industrial distributed systems (FF, CANopen, Profibus, KNX, ASI, HART, ... ) specific features and applications
8. Computer networks (particularly IEEE 802.3), versions, active elements and their configuration, VLAN, deterministic scheduling
9. Wireless networks I (IEEE 802.11, IEEE 802.16)
10. Wireless networks II (IEEE 802.15, ZigBee, Bluetooth, RFID)
11. Networks and modems (PSTN, xDSL, GSM, PLC, cable, radio), parameters and applications
12. TCP/IP basics, Internet protocols and technologies
13. Internetworking, routing, network administration protocols and instruments
14. Distributed systems applications, (data and communication networks, control systems, geographically distributed DAQ systems, vehicle and airplane networks, ... ), EMC

Exercises outline:

1. Introduction, safety in laboratory, presentation of laboratory tasks.
2. Modem communication
3. Frequency spectra of modulated signals.
4. Fiber optics parameters measurement.
5. Evaluation of EIA-485 based communication channel.
6. Modular optical telemetry system.
7. Digital modulations and protocols for wireless networks.
8. Wireless sensor network signal coverage prediction and verification.
9. Evaluation of CAN based distributed system.
10. Power line communication.
11. Simulation of communication channel in Matlab environment.
12. Evaluation of the ZigBee network.
13. Deterministic communication in Ethernet networks.
14. Evaluation, assessment.

Literature:

[1] Halsall, F.: Data Communications, Computer Networks and Open Systems. Adison Wesley 1996, ISBN 978-0201422931
[2] Elsenpeter, R.C.: Optical Networking. McGraw-Hill 2001, ISBN 978-0072193985
[3] Sohraby, K.: Wireless Sensor Networks: Technology, Protocols and Applications. John Wiley & Sons 2007, ISBN 978-0471743002

Requirements:

Webpage:

https://moodle.fel.cvut.cz/courses/AE3B38DSY

Subject is included into these academic programs:

Program Branch Role Recommended semester
BEKME1 Communication Technology V 5
BEKME5 Komunikace a elektronika V 5
BEKME_BO Common courses V 5
BEKME4 Network and Information Technology V 5
BEKME3 Applied Electronics V 5
BEKME2 Multimedia Technology V 5
BEKYR1 Robotics P 5
BEKYR_BO Common courses P 5
BEKYR3 Systems and Control P 5
BEKYR2 Sensors and Instrumentation P 5
BEEEM1 Applied Electrical Engineering V 5
BEEEM_BO Common courses V 5
BEEEM2 Electrical Engineering and Management V 5
BEOI1 Computer Systems V 5
BEOI_BO Common courses V 5
BEOI3 Software Systems V 5
BEOI2 Computer and Information Science V 5


Page updated 17.6.2019 05:52:56, semester: Z,L/2020-1, L/2018-9, Z,L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)