Subject description - B6B01LAG

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
B6B01LAG Linear Algebra
Roles:P Extent of teaching:4P+2C+2D
Department:13101 Language of teaching:
Guarantors:Velebil J. Completion:Z,ZK
Lecturers:Velebil J. Credits:7
Tutors:Dvořák J., Pospíšil K., Puš V., Velebil J. Semester:L

Anotation:

Náplní předmětu je standardní úvod do lineární algebry. Jedná se zejména o pojmy lineárního prostoru a lineárního zobrazení, o pojem matice (především matice lineárního zobrazení), o definice operací s maticemi a o pojem inversní matice. Dále budou probrána vlastní čísla lineárních zobrazení a skalární součin. Teorie bude vybudována jak nad reálnými čísly, tak nad obecným tělesem . Teoretické pojmy budou aplikovány na problematiku řešení lineárních soustav, základní úvahy z geometrie a teorie kódů.

Study targets:

Naučit studenty teoretické základy lineární algebry a aplikovat je v technické praxi.

Course outlines:

1. Lineární prostor, abstraktní vektor, axiomy linearity nad tělesem (reálných čísel a nad obecným tělesem).
2. Lineární závislost a nezávislost, lineární obal.
3. Báze, dimenze, souřadnice vektoru v bázi.
4. Lineární zobrazení, algebra matic.
5. Matice a matice lineárního zobrazení, operace s maticemi.
6. GEM a soustavy lineárních rovnic.
7. Permutace a determinanty (jejich geometrický význam).
8. Determinant (rozvoj podle řádku, Cramerova věta, regulární soustavy, inversní matice).
9. Vlastní čísla a vlastní vektory matice resp. lineárního zobrazení, diagonalizace matic.
10. Skalární součin, ortogonalita.
11. Aritmetické vektory nad Z_p a Z_2, řešení soustav lineárních rovnic nad Z_2.
12. Aplikace řešení soustav lineárních rovnic v kódování.
13. Další geometrické aplikace lineární algebry.
14. Rezerva.

Exercises outline:

1. Polynomy, kořeny polynomů (nad tělesy reálných a komplexních čísel).
2. Gaussova eliminační metoda, vlastnosti, hodnost matice.
3. Lineární prostory, lineární závislost a nezávislost.
4. Báze, dimenze, souřadnice vektoru v bázi.
5. Lineární zobrazení, matice lineárního zobrazení.
6. Algebra lineárních zobrazení a algebra matic (operace s maticemi).
7. Matice lineárního zobrazení a transformace souřadnic.
8. GEM a soustavy lineárních rovnic.
9. Determinanty a jejich výpočet, regulární soustavy.
10. Vlastní čísla a vlastní vektory matice resp. lineárního zobrazení.
11. Skalární součin, ortogonalita, Gram-Schmidtův proces.
12. Aritmetické vektory nad Z_p a Z_2.
13. Řešení soustav lineárních rovnic nad Z_2.
14. Rezerva.

Literature:

- J.Velebil: Abstraktní a konkrétní lineární algebra, http://math.feld.cvut.cz/velebil/akla.html - J. Hefferon: Linear algebra, Saint - Michael's College, http://joshua.smcvt.edu/linearalgebra/ - P. Pták: Introduction to Linear Algebra. ČVUT, Praha, 2005. - E. Krajník: Základy maticového počtu. ČVUT, Praha, 2006.

Requirements:

Předmět nevyžaduje prerekvizit. Nutná je však znalost práce s pojmy definice, věta a důkaz. Předmět předpokládá základní prostorovou představivost a znalost geometrie přímek a rovin ve 3D prostoru.

Webpage:

http://math.feld.cvut.cz/velebil/teaching/b6b01lag.html

Subject is included into these academic programs:

Program Branch Role Recommended semester
BPSIT Common courses P 2


Page updated 6.8.2020 17:51:45, semester: Z,L/2020-1, L/2019-20, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)