Subject description - B0B01PAN

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
B0B01PAN Advanced Analysis
Roles:PV Extent of teaching:2P+2S
Department:13101 Language of teaching:CS
Guarantors:Hamhalter J. Completion:Z,ZK
Lecturers:Hamhalter J., Sobotíková V. Credits:6
Tutors:Hamhalter J., Sobotíková V. Semester:L

Web page:

https://math.fel.cvut.cz/en/people/sobotik/vyuka/b0b01pan

Anotation:

Subject serves as an introduction to measure and integration theory and functional analysis. The first part deals with Lebesgue integration theory. Next parts are devoted to basic concepts of the theory of Banach and Hilbert spaces and their connection to harmonic analysis. Last part deals with spectral theory of operators and their application to matrix analysis.

Course outlines:

1. Measurable space. Field of measurable sets, measures.
2. Abstract Lebesgue integral and expectation value of random variable
3. Lebesgue measure in R^n (construction using outer measure). Lebesgue integral
4. Convergence theorems.
5. Product measure. Fubini Theorem
6. Integration in R^n - substitution theorem.
7. Normed space. Completeness. Bounded operators.
8. Inner product space. Hilbert space. projection Theorem.
9. Space L^2(R) as a Hilbert space. Density of smooth functions with compact support. Fourier transform in L^2(R). Plancherel Theorem.
10. Spectra of operators in a Hilbert space. Basic classes of operators in a Hilbert space - positive, self-adjoint, unitary, projection.
11. Diagonalization of a normal operator and matrix.
12. Decompositions of matrices and operators - spectral, polar, SVD.
13. Functions of operators and matrices.
14. Spare lecture

Exercises outline:

1. Measurable space. Field of measurable sets, measures.
2. Abstract Lebesgue integral and expectation value of random variable
3. Lebesgue measure in R^n (construction using outer measure). Lebesgue integral
4. Convergence theorems.
5. Product measure. Fubini Theorem
6. Integration in R^n - substitution theorem.
7. Normed space. Completeness. Bounded operators.
8. Inner product space. Hilbert space. projection Theorem.
9. Space L^2(R) as a Hilbert space. Density of smooth functions with compact support. Fourier transform in L^2(R). Plancherel Theorem.
10. Spectra of operators in a Hilbert space. Basic classes of operators in a Hilbert space - positive, self-adjoint, unitary, projection.
11. Diagonalization of a normal operator and matrix.
12. Decompositions of matrices and operators - spectral, polar, SVD.
13. Functions of operators and matrices.
14. Spare tutorial

Literature:

[1] Rudin, W.: Analýza v reálném a komplexním oboru, Academia, 1977
[2] Kreyszig, E.: Introductory functional analysis with applications, Wiley 1989
[3] Lukeš, L.: Jemný úvod do funkcionální analýzy, Karolinum, 2005
[4] Meyer, C.D.: Matrix analysis and applied linear algebra, SIAM 2001.

Requirements:

Předmět je zakončen standardně zápočtem a zkouškou. Podmínkou pro získání zápočtu je aktivní účast na výuce. Hodnocení předmětu bude záviset na zkoušce samotné. Zkouška je ústní a je při ní zkoušena probraná látka. Další informace viz https://math.fel.cvut.cz/en/people/sobotik/vyuka/b0b01pan

Subject is included into these academic programs:

Program Branch Role Recommended semester
BPKYR_2021 Common courses PV 4,6


Page updated 28.3.2024 17:52:49, semester: Z/2023-4, Z/2024-5, L/2023-4, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)