Popis předmětu - B2B17EMP

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
B2B17EMP Elektromagnetické pole Rozsah výuky:2+2s
Garanti:Pankrác V. Role:P Jazyk výuky:CS
Vyučující:Hazdra P., Jelínek L., Pankrác V., Škvor Z. Zakončení:Z,ZK
Zodpovědná katedra:13117 Kreditů:4 Semestr:Z

Anotace:

Předmět seznamuje studenty se základy aplikované teorie elektromagnetického pole, poskytuje základní fyzikální pohled na studované jevy a děje a tento pohled zasazuje do rámce praktického inženýrského využití vykládaných zákonitostí. Absolvent předmětu získá v této oblasti potřebné základní vědomosti pro studium návazných předmětů souvisejících s návrhem elektronických prvků a obvodů, komunikačních systémů a dalších technologií.

Cíle studia:

Absolvent předmětu chápe elektromagnetické jevy, získá základní kvantitativní odhad jejich významu, umí řešit jednoduchá pole analyticky, chápe principy numerických metod používaných v simulátorech polí.

Osnovy přednášek:

1) Podstata elektromagnetických jevů, elektrické náboje jako zdroje elektromagnetického pole. Vymezení makroskopického pohledu na elektromagnetické pole. Pole vírové a potenciálové. Klasifikace prostředí.
2) Elektrostatické pole, Coulombův zákon, intenzita elektrického pole E. Gaussova věta elektrostatiky v integrálním a diferenciálním tvaru, pojem divergence vektorové funkce.
3) Elektrické pole v elektricky dobře vodivých a dielektrických materiálech. Elektrické pole volných nábojů, elektrická indukce D a elektrický indukční tok. Vázané náboje v dielektriku, jev polarizace materiálu, elektrický dipól, dipólový moment, polarizace P, susceptibilita, permitivita.
4) Práce vykonaná v elektrickém poli, napětí, potenciál. Gradient skalární funkce. Laplaceova a Poissonova rovnice. Definice kapacity. Energie soustavy bodových nábojů. Energie v nabitém kapacitoru. Energie elektrického pole vyjádřená pomocí vektorů E a D.
5) Síly v elektrickém poli, princip virtuálních prací. Podmínky na rozhraní dvou dielektrických materiálů i na rozhraní s dobrým elektrickým vodičem. Metoda zrcadlení v elektrickém poli.
6) Stacionární proudové pole, definice elektrického proudu a proudové hustoty, rovnice kontinuity elektrického proudu. Ohmův a Jouleův zákon, podmínky na rozhraní dvou vodivých prostředí, elektromotorické napětí zdroje.
7) Stacionární magnetické pole, magnetická indukce B, Biotův-Savartův zákon, Ampérův zákon celkového proudu v integrálním a diferenciálním tvaru, pojem rotace vektorové funkce.
8) Jev magnetizace materiálu, ekvivalentní vázaný proud v magnetiku. Magnetický dipól, magnetický dipólový moment. Intenzita magnetického pole H a magnetizace M, magnetická susceptibilita a permeabilita.
9) Magnetický indukční tok ?, statická definice vlastní a vzájemné indukčnosti. Podmínky na rozhraní dvou magnetik. Metoda zrcadlení v magnetickém poli. Síly v magnetickém poli. Princip virtuálních prací pro výpočet sil v magnetickém poli.
10) Energie v magnetickém poli, energie soustavy induktorů protékaných el. proudy , energetická definice indukčnosti. Pojem vnitřní a vnější indukčnosti. Energie v magnetickém poli vyjádřená pomocí vektorů pole B a H.
11) Magnetické pole v magnetických obvodech, Hopkinsonův zákon, pojem magnetomotorického napětí a magnetické reluktance. Faradayův indukční zákon, Lenzovo pravidlo. Dynamická definice vlastní a vzájemné indukčnosti.
12) Úplná soustava Maxwellových rovnic v integrálním a diferenciálním tvaru. Harmonicky časově proměnné elektromagnetické pole, zápis veličin pomocí fázorů. Obecná energetická bilance v elektromagnetickém poli ? Poyntingův teorém. Poyntingův vektor.
13) Elektromagnetická vlna ve volném prostoru, vlnová rovnice, řešení vlnové rovnice pro rovinnou harmonickou elektromagnetickou vlnu. Konstanta šíření a vlnová impedance. Vlnová délka, fázová a skupinová rychlost.
14) Elektromagnetická vlna v ideálním dielektriku a elekt ricky dobře vodivém prostředí. Výkon přenášený elektromagnetickou vlnou, polarizace elektromagnetické vlny. Hloubka vniku, elektrický a magnetický povrchový jev.

Osnovy cvičení:

1) Základní matematický aparát pro popis elektromagnetického pole:
Skalární a vektorové veličiny, skalární a vektorová funkce, souřadnicové systémy. Operace s vektory: Sčítání a odčítání, násobení vektorů (skalární a vektorový součin). Křivkové, plošné a objemové integrály. Tok vektoru plochou a uzavřenou plochou, gradient skalární funkce, divergence vektorové funkce, Gauss-Ostrogradského věta, rotace vektorové funkce, Stokesova věta.
2) Výpočty elektrických polí pomocí superpozice elektrického pole bodových nábojů:
Elektrické pole rovnoměrně rozloženého náboje na přímce, na ose tenkého prstence, na ose tenkého rovnoměrně nabitého disku.
3) Aplikace Gaussovy věty
Elektrické pole dlouhého tenkého rovnoměrně nabitého vodiče, rovnoměrně nabité kulové elektrody, dlouhého nabitého válce, rozlehlé rovnoměrně nabité roviny. Elektrické pole opačně nabitých rovin, kulových a válcových elektrod.
4) Kondenzátory, kapacita a intenzita elektrického pole mezi elektrodami
Kapacita a elektrické pole deskového kondenzátoru, válcového kondenzátoru (koaxiálního kabelu) a sférického kondenzátoru.
5) Potenciál v elektrickém poli, metoda zrcadlení
Kapacita dvouvodičového vedení. Kapacita vodiče a kulové elektrody nad elektricky vodivou rovinou. Vliv země na kapacitu mezi vodiči dvouvodičového vedení.
6) Výpočet elektrických sil, použití metody virtuálních prací
7) Stacionární proudové pole, příklad výpočtu elektrického odporu
Elektrický odpor válcových vodivých elementů, radiální odpor v koaxiálním kabelu, pojem uzemnění a výpočet přechodového odporu
8) Magnetostatické pole, superpozice magnetického pole proudových elementů pomocí Biot-Savartova zákona
Magnetické pole vybuzené přímým úsekem vodiče protékaného elektrickým proudem, magnetické pole na ose kruhové proudové smyčky.
9) Aplikace Ampérova zákona
Magnetické pole v okolí tenkého vodiče protékaného elektrickým proudem, magnetické pole uvnitř a vně válcového vodiče protékaného proudem, magnetické pole v koaxiálním kabelu.
10) Vlastní a vzájemná indukčnost, příklady výpočtu
Indukčnost koaxiálního kabelu, indukčnost dvouvodičového vedení, vzájemná indukčnost dvouvodičového vedení a obdélníkové smyčky.
11) Síly v magnetickém poli, magnetické obvody
Síly mezi rovnoběžnými vodiči protékanými elektrickým proudem. Výpočty magnetických obvodů, cívky na magnetických obvodech, vlastní a vzájemné indukčnosti cívek na magnetických obvodech
12) Příklady použití Faradayova indukčního zákona
13,14) Rovinná harmonická elektromagnetická vlna Vlastnosti rovinné harmonické elektromagnetické vlny, výpočet vlnové délky, fázové rychlosti, vlnové impedance, konstanty šíření (měrného útlumu a fázové konstanty) ve volném prostoru a rovněž v elektricky vodivých materiálech či dielektriku.

Literatura:

[1] Pankrác, V.: Základy teorie elektromagnetického pole, výukový materiál k tomuto předmětu (on line), ČVUT Praha
[2] Novotný, K.: Teorie elmag. pole I. Skriptum, ČVUT Praha, 1998
[3] Haňka, L.: Teorie elektromagnetického pole, SNTL, Praha 1975
[4] Mayer, D.: Aplikovaný elektromagnetizmus. Kopp, České Budějovice 2012
[5] Pankrác, V. - Hazdra, P. - Novotný, K.: Teorie elektromagnetického pole - Příklady, Skriptum ČVUT Praha, 2005
[6] Hayt, Jr., W. H., Buck, J. A.: Engineering Electromagnetics, 8th ed., McGraw-Hill, New York, 2012
[7] Sadiku, M.N.O.: Elements of Electromagnetics. Saunders College Publishing. London, 1994
[8] Collin, R.E.: Field Theory of Guided Waves. 2nd Edit., IEEE Press, New York 1991

Požadavky:

Základní znalosti matematické analýzy a fyziky v rozsahu prvního ročníku bakalářského studia.

Webová stránka:

http://moodle.fel.cvut.cz

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BPEK_2016 Před zařazením do oboru P 3


Stránka vytvořena 17.12.2018 17:48:15, semestry: Z,L/2020-1, L/2017-8, L/2019-20, Z,L/2018-9, Z/2019-20, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)
Za obsah odpovídá: doc. Ing. Ivan Jelínek, CSc.