Popis předmětu - BD5B01STP

Přehled studia | Přehled oborů | Všechny skupiny předmětů | Všechny předměty | Seznam rolí | Vysvětlivky               Návod
BD5B01STP Statistika a pravděpodobnost Rozsah výuky:14+6
Garanti:Helisová K. Role:P Jazyk výuky:
Vyučující:Helisová K. Zakončení:Z,ZK
Zodpovědná katedra:13101 Kreditů:6 Semestr:L

Anotace:

Cílem předmětu je seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Cíle studia:

Seznámení studentů se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Obsah:

Cílem předmětu je seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Osnovy přednášek:

1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů - základní konstrukce, užití k testování hypotéz.
14. Testování hypotéz - obecný princip, t-test, test dobré shody, test nezávislosti v kontingenční tabulce.

Osnovy cvičení:

1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů - základní konstrukce, užití k testování hypotéz.
14. Testování hypotéz - obecný princip, t-test, test dobré shody, test nezávislosti v kontingenční tabulce.

Literatura:

[1] M. Navara: Pravděpodobnost a matematická statistika. ČVUT, Praha 2007.
[2] V. Dupač, M. Hušková: Pravděpodobnost a matematická statistika. Karolinum, Praha 1999.

Požadavky:

Základní metody výpočtu integrálů.

Webová stránka:

http://math.feld.cvut.cz/helisova/01pstAD7B01PST.html

Klíčová slova:

Pravděpodobnost, statistika.

Předmět je zahrnut do těchto studijních plánů:

Plán Obor Role Dop. semestr
BKEEK_2016 Před zařazením do oboru P 4


Stránka vytvořena 15.10.2018 10:53:20, semestry: Z,L/2020-1, L/2017-8, L/2019-20, Z,L/2018-9, Z/2019-20, připomínky k informační náplni zasílejte správci studijních plánů Návrh a realizace: I. Halaška (K336), J. Novák (K336)
Za obsah odpovídá: doc. Ing. Ivan Jelínek, CSc.